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Abstract 
 
 

A forecasting model for unemployment is constructed that exploits the time-series 

properties of unemployment while satisfying the economic relationships specified by 

Okun’s law and the Phillips curve. In deriving the model, we jointly consider the 

problem of obtaining estimates of the unobserved potential rate of unemployment 

consistent with Okun’s law and Phillips curve, and associating the potential rate of 

unemployment to actual unemployment. The empirical example shows that the model 

clearly outperforms alternative forecasting procedures typically used to forecast 

unemployment. 
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1 Introduction

Economic forecasters are often confronted with the problem of how to de-

sign forecasting models which are based on economic theory and which also

exploit the time-series properties inherent in the data. Both aspects are

important: theory guides the selection of relevant variables and the speci�-

cation of relationships in the forecasting model while the properties of the

data guide the e¢ cient use of information in the estimation.

The aim of this paper is to show how forecasts of the unemployment

rate, one of the most important variables in economics, can be improved by

applying economic theory in an econometric framework which emphasises the

time series properties inherent in the data. Such an approach is, of course,

not new; the novel aspect of this paper is that two of the most popular

relationships in economics - Okun�s Law and Phillips Curve - which relate

the movements of output, prices and unemployment, are jointly expressed

as a system of �gap�equations in a state space form to produce forecasts of

unemployment. The resulting forecast of unemployment is consistent with

both Okun�s law and the Phillips curve, as well as the time-series properties

of actual unemployment.

The econometric forecasting model uses the trend-cyclical decomposition

methods of Harvey et. al. (1986), Kuttner (1994) and Malley and Molana

(2008). More speci�cally, we rely on Att�eld and Silverstone (1998) who

show that the unobserved components in any �gap�equation may be identi-

�ed by reference to the stochastic trend emanating from a Beveridge-Nelson

decomposition, and the work of Anderson et al. (2006) who represent the

Beveridge and Nelson (1981) decomposition in the single source of error state

space framework. The advantage of this set-up is that it provides a parsimo-

nious and e¢ cient way to combine Okun�s law and Phillips curve in a form

that is easily estimable.

The forecasting performance of the model is evaluated against forecasts

from VAR and Bayesian VAR models estimated using the same information

set. The VAR and BVAR approaches are commonly used for economic fore-

casting and numerous studies have provided evidence regarding their fore-
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casting capacity relative to structural univariate or AR approaches (Artis

and Zhang, 1990; Ramos, 2003; see also De Gooijera and Hyndman (2006)

for a general review).

The paper is organised as follows. In the next section, we specify a latent

variable forecasting model using Okun�s law and the Phillips curve. Section

3 details the model selection process used in this paper. The results are

presented in Section 4, with Section 5 concluding the paper.

2 A latent variable forecasting model based

on Okun�s law and Phillips curve

This section sets up a system of gap equations that jointly capture the eco-

nomic relationships postulated by Okun (1962) and Phillips (1958). Impor-

tantly, both theories signify an explanatory role for the deviation between

the unemployment rate and the �natural�rate of unemployment in the move-

ments of output and in�ation respectively.

The empirical relationship between the rate of unemployment and output

suggested by Okun (1962) can be expressed as a gap equation

yt � y�t = �1(ut � u�t ) + �t (1)

where yt is the logarithm of observed real output, ut is the observed unem-

ployment rate, y�t and u
�
t correspond to potential output and the �natural�

rate of unemployment respectively, and �t is an i.i.d. normal error term.

Okun�s coe¢ cient, �1, is a measure of the responsiveness of the unemploy-

ment rate to output growth. Att�eld and Silverstone (1998) show that �1 can

be interpreted as a cointegration coe¢ cient if y�t and u
�
t are de�ned in terms

of long run stochastic trend values. More importantly, they show that the

long run stochastic trend has a Beveridge-Nelson decomposition (Beveridge

and Nelson, 1981)

Phillips (1958) asserts a similar relationship between in�ation and the
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unemployment rate gap

pt � p�t = �2(ut � u�t ) + �t (2)

where pt is the in�ation rate, p�t represents underlying in�ation, and �t is

an iid-normal error term. As with (1), it can be showed that the long run

stochastic trend in (2) has a Beveridge and Nelson decomposition.

Pursuant to the Beveridge-Nelson decomposition of (1), (2), the set of

variables yt, pt and ut can be expressed in terms of their trend and cyclical

components

yt = y
�
t + y

c
t (3)

ut = u
�
t + u

c
t (4)

pt = p
�
t + p

c
t (5)

where yct , u
c
t and p

c
t are the (by de�nition, stationary) cyclical components.

From equations (3), (4) and (5), it can be shown that the gap equations

(1) and (2) respectively, can be written as

yct = �1u
c
t + �t (6)

pct = �2u
c
t + �t (7)

which shows that the cyclical components yct and p
c
t are commonly driven by

uct : Replacing equation (6) into (3) and equation (7) into (5) respectively,

yields

yt = y
�
t + �1u

c
t + �t (8)

pt = p
�
t + �2u

c
t + �t (9)

where the error terms �t and �t are assumed to be contemporaneously corre-

lated.

Anderson et al. (2006) indicate that trends and cycles can be formulated

using a single source of error state space form. That is, there is perfect

correlation between innovations to the trends and cycles.

There are several methods that may be used to model the unobserved
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components y�t , u
�
t , and p

�
t . We follow the common practice of treating the

latent variables as random walks with drift and an ARMA(2,1) process1 for

the stationary variable uct : The model becomes

y�t = � 1 + y
�
t�1 + 
1"1t (10)

u�t = � 2 + u
�
t�1 + 
2"2t (11)

p�t = � 3 + p
�
t�1 + 
3"3t (12)

uct = �1u
c
t�1 + �2u

c
t�2 + �"2t�1 + (1� �)"2t: (13)

To allow a more �exible ARMA process, we also model a variant of uct
that is driven by a trigonometric process (i.e., a mixture of sine and cosine

waves) "
uct

u+ct

#
= �

"
cos� sin�

� sin� cos�

#"
uct�1

u+ct�1

#
+

"
�"2t

�"2t

#
(14)

where � is a damping factor such that � 2 [0; 1) and � is the cycle frequency
spanning from 0 to �: For identi�cation, we assume uct and u

+c
t are driven

by a common disturbance �"2t (see Harvey, 1989, pg. 39). u+ct is needed for

the construction of uct . When � = 0; the equation u+ct becomes redundant

which implies uct is driven by an AR(1) process. For j�j < 1, and 0 < � < �,
u+ct and uct are stationary ARMA(2,1) processes. Unlike (13), this alternative

functional form results in an ARMA process that incorporates pseudo-cyclical

behaviour (Koopman et al., 2005).

Accordingly, these relationships constitute a system of structural equa-

tions that form the basis for obtaining estimates of the unemployment rate.

The focus here is strictly on the unemployment rate for two reasons. First,

as discussed in a later section, the measurement of an appropriate price vari-

able is an issue we explore and second, the proposed system is only a partial

explanation of the determination of the output variable.

1The ARMA(2,1) is chosen since it accomodates the possibility of cyclical behavior in
uct . Alogoskou�s and Stengos (1991) �nd that the US unemployment rate is appropriately
modelled as an AR(2) process with ARCH errors.
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2.1 A state space representation for (yt; ut; pt)

In this section, we present a state space representation for (yt,ut; pt). Without

loss of generality, to express the state space with a common source of error

in the measurement and transition equations we assume that �t = 
4"1t and

�t = 
5"3t:

Together with equations (8), (9), (10), (11), (12) and (13), it can be

shown that there exists a state space form

264 ytut
pt

375 =
264 � 1� 2
� 3

375+
264 1 0 0 �1�1 �1

0 1 0 �1 1

0 0 1 �2�1 �2

375
26666664
y�t�1

u�t�1

p�t�1

uct�1

dt�1

37777775+ �t (15)

26666664
y�t

u�t

p�t

uct

dt

37777775 =
26666664
� 1

� 2

� 3

0

0

37777775+
26666664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 �1 1

0 0 0 �2 0

37777775

26666664
y�t�1

u�t�1

p�t�1

uct�1

dt�1

37777775+
26666664
�1 �2 0

0 
2 0

0 �4 �3

0 (1� 
2) 0

0 � 0

37777775 �t
(16)

�t =

264 (
1 + 
4) �1(1� 
2) 0

0 1 0

0 �2(1� 
2) (
3 + 
5)

375
264 "1t"2t
"3t

375 (17)

where �t is common in both the measurement and transition equations; �1 =

1


1+
4
; �2 = �1 (��1 + �1
2) ; �3 =


3

3+
5

and �4 = �3 (��2 + �2
2) :

Similarly, when equations (8), (9), (10), (11), (12) and (14) are taken
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together, it can be shown that the following state space form exists

264 yt

ut

wt

375 =
264 � 1� 2
� 3

375+
264 1 0 0 �1� cos� �1� sin�

0 1 0 � cos� � sin�

0 0 1 �2� cos� �2� sin�

375
26666664
y�t�1

u�t�1

w�t�1

uct�1

u+ct�1

37777775+ �t (18)

26666664
y�t

u�t

w�t

uct

u+ct

37777775 =
26666664
� 1

� 2

� 3

0

0

37777775+
26666664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 � cos� � sin�

0 0 0 �� sin� � cos�

37777775

26666664
y�t�1

u�t�1

w�t�1

uct�1

u+ct�1

37777775+
26666664
�1 �4 0

0 1� �3 0

0 �5 �2

0 �3 0

0 �3 0

37777775 �t
(19)

�t = �"t =

264 (
1 + 
4) �1� 0

0 (
2 + �) 0

0 �2� (
3 + 
5)

375
264 "1t"2t
"3t

375 (20)

where �1 =

1


1+
4
; �2 =


3

3+
5

; �3 =
�

�+
2
; �4 = ���1


1
�
1+�
4+
1
2+
2
4

, and

�5 = ���2

3

�
3+�
5+
2
3+
2
5
:

Maximum likelihood estimates of the model parameters are obtained us-

ing

log L (� ; �; �; �; ; �) _ �T
2
log j�j � 1

2

TX
t=1

�0t��t (21)

Ord et al. (1997) showed that maximum likelihood estimation based on

exponential smoothing can be employed to estimate a state space model with

common errors in the measurement and transition equations. The common

practice in the literature (Hyndman et al., 2002; Taylor, 2008) is to use the

�rst few observations to estimate the initial values. As the initial values

are not maximum likelihood estimates, however, optimisation is achieved

by maximising a conditional likelihood function (Taylor, 2008). As the state

space model comprises a vector (rather than a scalar) of common errors in the

transition and measurement equations, the appropriate likelihood function is
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identical to that of the vector exponential smoothing framework in de Silva

et al (2008). The use of the single source of error state space form avoids the

need for matrix inversion to obtain the state variables (as opposed to Kalman

�lter based estimation). Consequently, the computational order of the model

is approximately equal to that of a VAR model of similar dimension.

3 Measuring prices and model selection

An obvious impediment to implementing the model de�ned in Sections 2 and

3 is that, unlike output and unemployment, there are alternative measures

of prices that may be used. Alternative price measures will yield di¤erent

measures of potential output and, therefore, di¤erent forecasts of actual un-

employment rates. Three widely adopted measures of prices are considered in

this paper: wage in�ation wt; headline in�ation ht, and underlying in�ation

lt. The use of wage in�ation is consistent with the original formulation of the

Phillips curve (Phillips, 1958) whereas later research typically uses headline

or underlying in�ation to measure prices in the Phillips curve context (King

and Watson, 1995; Gruen et al., 1999; Hamilton, 2001).

The alternative choices available for measuring prices raise the possibility

of alternative permutations of the basic forecasting model. The underlying

rationale for considering permutations of the basic model is that a particular

permutation may be able to better capture aggregate price changes and thus

of better forecasts of the unemployment rate. Appendix A provides a list

of the permutations considered which include the cases with and without

Okun�s Law as well as alternative combinations of two price measures. For

completeness, Appendix B presents the state space forms for the permuta-

tions.

The forecasting exercise adopted in this paper generates forecasts from

each permutation (or model), and a running forecast that depends on an

in-sample model selection process. The in-sample selection process is imple-

mented to minimize the potential for forecast bias (see Rapach et al. (2004)

regarding the minimisation of forecast bias using variable selection proce-

dures reliant only on in-sample data). Since alternative measures of in�ation
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are considered in this paper, the identity of the price variable, in contrast to

the output and unemployment variables, is not �xed. The likelihood function,

however, contains information regarding the �t of the entire set of equations,

including the in�ation equation (2). To avoid choosing a particular model

due to the �t associated with a given proxy for pt and yt, it is necessary

that the model selection procedure be independent of pt and yt: This may

be achieved by considering the marginal likelihood function of ut. Since we

assume that the model errors are normally distributed, the joint density of

yt; ut; pt is multivariate normal. Consequently, the computation of the mar-

ginal distribution for ut is straightforward; the marginal distribution of ut is

univariate normal.

Akaike�s information criterion (IC) (Akaike, 1974) and Schwarz�s Bayesian

IC (Schwarz, 1978) are commonly used to select among competing model

choices.2 Rather than incorporate the full likelihood function into the AIC

and BIC, the likelihood function is replaced with the appropriate marginal

likelihood in line with the preceding discussion. We denote both measures

as partial AIC (PAIC) and partial BIC (PBIC) given their reliance on the

partial information set.

PAIC = 2k � 2 lnL

PBIC = 2k lnn� 2 lnL

where k is the number of parameters, n is the number of observations and L

is the marginal likelihood computed using only the second element of �t and

�22.

4 Evaluation of the forecasts

The data used in the empirical analysis are (quarterly) real GDP, the un-

employment rate and the in�ation rate for Australia over the period 1983:1

to 2008:2. Since the GDP and in�ation measures are quarterly data, we

convert the monthly unemployment rate into a quarterly �gure. The three

2The use of AIC and BIC for single source of error models is motivated by Ord et al.
(1997)

8



possible measures of in�ation considered are: headline in�ation, underlying3

(weighted median) in�ation and wage in�ation based on average weekly earn-

ings.4 The series for GDP, unemployment, headline in�ation, and average

weekly earnings are obtained from the Australian Bureau of Statistics web-

site (www.abs.gov.au) while the underlying in�ation data are obtained from

the Reserve Bank of Australia (RBA) website (www.rba.gov.au).

The forecasts are evaluated using a rolling forecast exercise. To do so,

we �rst divide the sample into two periods. The �rst period from 1983:3

to 1995:1 is used for initial estimation while the second period, from 1995:2

to 2008:2, is the out-of-sample evaluation period. The forecast exercise pro-

ceeds as follows. Commencing from the �rst period, the parameters are

estimated and 1 to 4 step-ahead forecasts are computed. The parameters

are re-estimated with an extra period of observations and once again 1 to 4

step-ahead forecasts are computed. This process is repeated until the sample

reaches 2008:1. Note that at this period, only 1 step-ahead forecasts are pro-

duced because there is only one period of observations remaining (similarly

in 2007:4 only 1 and 2 step-ahead forecasts are constructed). In summary,

52 periods of observations are used to determine the forecast accuracy for 1

step ahead forecasts, 51 periods for 2 step-ahead forecasts, 50 periods for 3

step-ahead forecasts and 49 periods for 4 step-ahead forecasts. In addition,

for each period we also conduct an in-sample exercise that uses the PAIC

and PBIC to select the best in sample model and the selected model is used

to generate 1-4 step-ahead forecasts.We use RMSE statistics to evaluate the

forecast performance of the models.

Table 1 presents the models�forecasting accuracy. In the table, we report

the performance of each permutation listed in Appendix A. We also provide

composite forecasts computed using the mean of the set of forecasts provided

by the alternative permutations, as well as forecasts associated with the in-

sample model selection procedure speci�ed in Section 2.2. We benchmark

the accuracy of the forecasts using three basic forecasting models: a Bayesian

3Unlike the headline in�ation �gure, the weighted median measure of underlying in-
�ation decreases the in�uence of the most volatile price changes, thereby producing a
smoother measure of consumer prices.

4The start date of this series on the ABS website is 1983:1.
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VAR, a standard VAR, and a random walk.

Table 1: RMSE statistics for the unemployment rate
Unemployment rate Forecast rank

1 2 3 4 GM 1 2 3 4 GM

M1 0.1517 0.1398 0.1321 0.1440 0.1417 2 17 6 7 6

M2 0.1646 0.1358 0.1362 0.1462 0.1453 20 10 10 8 9

M3 0.1617 0.1342 0.1420 0.1609 0.1493 15 6 13 20 17

M4 0.1608 0.1299 0.1312 0.1431 0.1407 14 3 5 6 3

M5 0.1545 0.1282 0.1360 0.1546 0.1429 4 1 9 13 8

M6 0.1631 0.1412 0.1382 0.1479 0.1473 18 19 11 10 12

M7 0.1597 0.1364 0.1431 0.1590 0.1492 13 12 16 17 16

M8 0.1752 0.1456 0.1349 0.1468 0.1499 27 22 8 9 18

M9 0.1581 0.1399 0.1464 0.1609 0.1511 10 18 21 20 20

M10 0.1719 0.1445 0.1469 0.1609 0.1557 24 21 22 20 22

M11 0.1744 0.1536 0.1541 0.1764 0.1643 26 26 25 25 25

M12 0.1573 0.1361 0.1426 0.1524 0.1469 7 11 15 11 11

M13 0.1622 0.1358 0.1308 0.1386 0.1414 16 10 4 2 5

M14 0.1596 0.1288 0.1268 0.1378 0.1377 12 2 1 1 1

M15 0.1630 0.1323 0.1297 0.1403 0.1408 17 5 3 4 4

M16 0.1579 0.1386 0.1454 0.1617 0.1506 9 16 20 22 19

M17 0.1589 0.1371 0.1422 0.1557 0.1482 11 14 14 14 14

M18 0.1562 0.1372 0.1395 0.1537 0.1464 6 15 12 12 10

M19 0.1684 0.1460 0.1516 0.1655 0.1576 22 23 24 24 23

M20 0.1650 0.1343 0.1326 0.1420 0.1429 21 7 7 5 8

M21 0.1691 0.1433 0.1435 0.1612 0.1539 23 20 18 21 21

M22 0.1724 0.1485 0.1505 0.1632 0.1583 25 24 23 23 24

CFu 0.1577 0.1307 0.1295 0.1394 0.1389 8 4 2 3 2

PAICu 0.1548 0.1369 0.1445 0.1586 0.1484 5 13 19 16 15

PBICu 0.1545 0.1356 0.1433 0.1577 0.1475 4 8 17 15 13

BV AR 0.1237 0.1502 0.1959 0.2553 0.1746 1 25 26 26 26

V AR 0.1644 0.1976 0.2695 0.3554 0.2362 19 27 27 27 27

RW 1.0000 1.0000 1.0000 1.0000 1.0000 28 28 28 28 28
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The VAR and BVAR models are constructed using the �ve variables

at our disposal: unemployment rate, real GDP growth, headline in�ation,

underlying in�ation, and wage in�ation. These are all variables for which

economic theory speci�es important co-relationships. For the BVAR, we

follow LeSage (1990) in adopting a Minnesota (or Litterman) prior for the

intercept and slope coe¢ cients, with the parameters estimated using Theil�s

mixed estimation approach (see, also, Litterman, 1986). Pursuant to the

Minnesota prior, we assume an a priori random walk forecasting framework.

We apply �tight�hyperparameters for the prior, thereby reducing the weight

attached to higher lags of the dependent variables.5 Lag lengths are chosen

using the AIC.

Of the 22 permutations considered, the permutation featuring unemploy-

ment, GDP, underlying in�ation and a trigonemetric process for the cyclical

unemployment component uct (permutation 14 in Appendix A) provides the

best RMSE forecasts for 3 and 4 quarters ahead and the 2nd smallest RMSE

for 2-quarter ahead forecasts. Permutation 14 also outperforms the combined

forecast CF , generated using all 22 permutations, and the forecasts based

on PAIC and PBIC in-sample selection at every forecast horizon. This is

expected given that the PAIC and PBIC approaches tend to select permuta-

tions 12, 16, 17, and 18 which are not among the better forecasting models

(see Table 2). The improved forecasts obtained using permutation 14 suggest

that the inclusion of the smoother underlying in�ation variable to capture

the price movements in Phillips equation yields a better forecast for unem-

ployment than either the relatively noisier headline in�ation �gure or wage

in�ation.

The unemployment forecasts generated by all but one permutation of the

combined Okun�s and Phillips models produce a smaller RMSE than the VAR

model for any forecast horizon. This suggests that the theoretical advantages

of the approach considered here, relative to an �uninformative�or unrestricted

model such as the VAR, result in signi�cant forecast improvements with

5For equation i, we adopt an overall tightness parameter of 0.1, a harmonic lag decay
of 1, a weight of 0.1 for lags of variable i, and symmetric weights of 0.1 for lags of other
variables.
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relatively little additional computational requirements.

Numerous studies have provided evidence that the Bayesian variant of the

VAR model yields forecasting improvements relative to the standard VAR

(LeSage, 1990; Shoesmith, 1992; Joutz et al., 1995; Amisano and Serati,

1999). Consequently, the BVAR provides a useful benchmark for assessing

the forecasting qualities of the combined Okun and Phillips model. In this

respect, the BVAR model produces the best single period-ahead unemploy-

ment forecast. This improvement, however, is not maintained for the 2, 3

and 4 step ahead forecasts, with the BVAR producing higher RMSE than all

but one of the permutations considered.

The forecasts generated using the in-sample PAIC and PBIC based se-

lection procedures also produce smaller average RMS errors than the VAR

or BVAR approaches, suggesting that the forecasting improvement does not

stem from any selection bias. Importantly, although the RMSE statistics

for the BVAR at 4-steps ahead are approximately twice the magnitude of

the 1-step ahead RMSE, the RMSE statistics for the PAIC and PBIC based

forecasts are of a similar magnitude at all four forecast steps. Consequently,

unlike the approach forwarded here, the quality of the forecasts generated by

a BVAR imbued with theoretically appropriate output, unemployment and

price data appear to be limited to a single period. In contrast, the combined

Okun�s law and Phillips curve approach appears to produce accurate fore-

casts for all four quarters. These results suggest that the combined approach

speci�ed here produces incremental forecasting bene�ts, especially where the

forecast period of interest is greater than the next-period ahead.

The RMSE statistics are presented relative to the RMSE for the random

walk (RW) benchmark. Values greater (lesser) than unity indicate a higher

(lower) RMSE than the RW benchmark. CF is generated using the mean

of the 22 permutations considered. The PAIC and PBIC models are de-

termined using the approach speci�ed in Section 2.2. The VAR and BVAR

models are vector autogression and Bayesian vector autoregression models

respectively. GM is the geometric mean of the RMSE for 1 to 4 steps ahead.
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Table 2. Models selected from PAIC and

PBIC for best in-sample �t for ut for period

between 1995:2 to 2008:03
AIC BIC AIC BIC

M1 0 0 M12 22 0

M2 0 0 M13 0 0

M3 0 0 M14 0 0

M4 0 0 M15 0 0

M5 0 0 M16 7 10

M6 1 1 M17 14 26

M7 0 0 M18 8 15

M8 0 0 M19 0 0

M9 0 0 M20 0 0

M10 0 0 M21 0 0

M11 0 0 M22 0 0

5 Conclusion

This paper showed that the unemployment rate could be forecasted from an

economic model of GDP growth, the unemployment rate and the in�ation

rate which was consistent with two popular economic relationships - Okun�s

Law and Phillips Curve. More importantly the relationships can be parsi-

moniously and e¢ ciently speci�ed as a system of gap equations which can

then be expressed as a Beveridge decompositional single source state-space

model. This formulation is advantageous because it produces an estimate of

potential unemployment consistent with both theories that is used to fore-

cast the unemployment rate. Moreover, the single source of error state space

formulation also reduces the computational requirements of the approach, as

the system is equivalent to a VAR model of similar dimension.

Overall, the forecasts generated by combining the theoretical insights of

Okun and Phillips appear to improve on those generated using standard

atheoretical forecasting models such as the VAR and BVAR models. Nearly

all the permutations of the combined approach improve on the unemployment
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forecasts provided by the BVAR, which performs poorly for all but one-step

ahead predictions. Importantly the RMSE of the forecasts generated using

the combined approach, in contrast to those generated using the VAR and

BVAR models, are similar for forecasts at 1, 2, 3 and 4 -quarters ahead

suggesting that the combination of Okun�s law and Phillips curve advocated

here is useful for generating both short and medium term unemployment

forecasts typically used in macroeconomic analysis.
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6 Appendix A: Models

Table A1. Combination of unemployment rates, GDP,

headline in�ation, underlying in�ation and wage in�ation

with uct spec�ed as either an ARMA process or a

trigonometric process.
Model GDP UR HI UI WI ARMA

1 � � �
2 � � � �
3 � � � �
4 � � � �
5 � � �
6 � � �
7 � � �
8 � � � � � �
9 � � � � �
10 � � � � �
11 � � � � �
12 � � �
13 � � � �
14 � � � �
15 � � � �
16 � � �
17 � � �
18 � � �
19 � � � � � �
20 � � � � �
21 � � � � �
22 � � � � �
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7 Appendix B

Let ht; lt and wt represent headline, underlying and wage in�ation respec-

tively and let h�t ; l
�
t and w

�
t be the corresponding unobserved trend compo-

nents. Examples of the state space form for the 2,4 and 5 equation systems

are provided below. For each of the systems, uct is expressed as an ARMA(2,2)

process and, alternatively, as a trigonometric process.

� 2-equation system (yt,ut) with ARMA(2,2) process in uct

"
yt

ut

#
=

"
� 1

� 2

#
+

"
1 0 �1�1 �1

0 1 �1 1

#266664
y�t�1

u�t�1

uct�1

dt�1

377775+ �t (22)

266664
y�t

u�t

uct

dt

377775 =
266664
� 1

� 2

0

0

377775+
266664
1 0 0 0

0 1 0 0

0 0 �1 1

0 0 �2 0

377775
266664
y�t�1

u�t�1

uct�1

dt�1

377775+
266664
�1 �2

0 
2

0 1� 
2
0 �

377775 �t

where �t =

"
(
1 + 
4) �1(1� 
2)

0 1

#"
"1t

"2t

#
; �1 =


1

1+
4

and �2 =

�1 (�1
2 � �1) :

� 2-equation system (yt,ut) with trigonometric process in uct

"
yt

ut

#
=

"
� 1

� 2

#
+

"
1 0 �1� cos� �1� sin�

0 1 � cos� � sin�

#266664
y�t�1

u�t�1

uct�1

u+ct�1

377775+ �t (23)
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266664
y�t

u�t

uct

u+ct

377775 =
266664
� 1

� 2

0

0

377775+
266664
1 0 0 0

0 1 0 0

0 0 � cos� � sin�

0 0 �� sin� � cos�

377775
266664
y�t�1

u�t�1

uct�1

u+ct�1

377775+
266664
�1 �3

0 1� �2
0 �2

0 �2

377775 �t
where �1 =


1

1+
4

; �2 =
�

�+
2
; �3 = ���1


1
�
1+�
4+
1
2+
2
4

and

�t =

"
(
1 + 
4) �1�

0 (
2 + �)

#"
"1t

"2t

#

� 4-equation system (yt,ut; wt; ht) with ARMA(2,2) process in uct

266664
yt

ut

wt

ht

377775=
266664
� 1

� 2

� 3

� 4

377775+
266664
1 0 0 0 �1�1 �1

0 1 0 0 �1 1

0 0 1 0 �2�1 �2

0 0 0 1 �3�1 �3

377775

26666666664

y�t�1

u�t�1

w�t�1

h�t�1

uct�1

dt�1

37777777775
+�t (24)

26666666664

y�t

u�t

w�t

h�t

uct

dt

37777777775
=

26666666664

� 1

� 2

� 3

� 4

0

0

37777777775
+

26666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 �1 1

0 0 0 0 �2 0

37777777775

26666666664

y�t�1

u�t�1

w�t�1

h�t�1

uct�1

dt�1

37777777775

+

26666666664

�1 �2 0 0

0 
2 0 0

0 �3 �4 0

0 �5 0 �6

0 1� 
2 0 0

0 � 0 0

37777777775
�t
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where �t =

266664
(
1 + 
6) �1(1� 
2) 0 0

0 1 0 0

0 �2(1� 
2) (
3 + 
7) 0

0 �3(1� 
2) 0 (
4 + 
8)

377775
266664
"1t

"2t

"3t

"4t

377775 ;
�1 =


1

1+
6

; �2 =

1


1+
6
(��1 + �1
2) ; �3 =


3

3+
7

(��2 + �2
2) ; �4 =

3


3+
7
; �5 =


4

4+
8

(��3 + �3
2) and �6 =

4


4+
8
:

� 4-equation system (yt,ut; wt; ht) with trigonometric process in
uct

266664
yt

ut

wt

ht

377775 =
266664
� 1

� 2

� 3

� 4

377775+
266664
1 0 0 0 �1� cos� �1� sin�

0 1 0 0 � cos� � sin�

0 0 1 0 �2� cos� �2� sin�

0 0 0 1 �3� cos� �3� sin�

377775

26666666664

y�t�1

u�t�1

w�t�1

h�t�1

uct�1

u+ct�1

37777777775
+�t

(25)26666666664

y�t

u�t

w�t

h�t

uct

u+ct

37777777775
=

26666666664

� 1

� 2

� 3

� 4

0

0

37777777775
+

26666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 � cos� � sin�

0 0 0 0 �� sin� � cos�

37777777775

26666666664

y�t�1

u�t�1

w�t�1

h�t�1

uct�1

u+ct�1

37777777775

+

26666666664

�1 �2 0 0

0 1� �7 0 0

0 �3 �4 0

0 �5 0 �6

0 �7 0 0

0 �8 0 0

37777777775
�t
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where �t =

266664
(
1 + 
6) �1� 0 0

0 (
2 + �) 0 0

0 �2� (
3 + 
7) 0

0 �3� 0 (
4 + 
8)

377775
266664
"1t

"2t

"3t

"4t

377775 ; �1 =

1


1+
6
; �2 = ���1


1
�
1+�
6+
1
2+
2
6

; �3 = ���2

3

�
3+�
7+
2
3+
2
7
; �4 =


3

3+
7

; �5 = ���3

4

�
4+�
8+
2
4+
2
8
; �6 =


4

4+
8

and �7 = �
�+
2

:

� 5-equation system (yt,ut; wt; ht; lt) with ARMA(2,2) process in
uct

26666664
yt

ut

wt

ht

lt

37777775 =
26666664
� 1

� 2

� 3

� 4

� 5

37777775+
26666664
1 0 0 0 0 �1�1 �1

0 1 0 0 0 �1 1

0 0 1 0 0 �2�1 �2

0 0 0 1 0 �3�1 �3

0 0 0 0 1 �4�1 �4

37777775

2666666666664

y�t�1

u�t�1

w�t�1

h�t

l�t

uct�1

dt�1

3777777777775
+�t (26)

2666666666664

y�t

u�t

w�t

h�t

l�t

uct

dt

3777777777775
=

2666666666664

� 1

� 2

� 3

� 4

� 5

0

0

3777777777775
+

2666666666664

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 �1 1

0 0 0 0 0 �2 0

3777777777775

2666666666664

y�t�1

u�t�1

w�t�1

h�t�1

l�t�1

uct�1

dt�1

3777777777775

+

2666666666664

�1 �2 0 0 0

0 
2 0 0 0

0 �3 �4 0 0

0 �5 0 �6 0

0 �7 0 0 �8

0 1� 
2 0 0 0

0 � 0 0 0

3777777777775
�t
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where �1 =

1


1+
6
; �2 =

1

1+
6

(�1
1
2 � �1
1) ; �3 = 1

3+
7

(�2
2
3 � �2
3) ;
�4 =


3

3+
7

; �5 =
1


4+
8
(�3
2
4 � �3
4) ; �6 =


4

4+
8

;

�7 =
1


5+
9
(
2�4
5 � �4
5) ; �8 =


5

5+
9

and

�t =

26666664
(
1 + 
6) �1(1� 
2) 0 0 0

0 1 0 0 0

0 �2(1� 
2) (
3 + 
7) 0 0

0 �3(1� 
2) 0 (
4 + 
8) 0

0 �4(1� 
2) 0 0 (
5 + 
9)

37777775

26666664
"1t

"2t

"3t

"4t

"5t

37777775
� 5-equation system (yt,ut; wt; ht; lt) with trigonometric process
in uct

26666664
yt

ut

wt

ht

lt

37777775 =
26666664
� 1

� 2

� 3

� 4

� 3

37777775+
26666664
1 0 0 0 0 �1� cos� �1� sin�

0 1 0 0 0 � cos� � sin�

0 0 1 0 0 �2� cos� �2� sin�

0 0 0 1 0 �3� cos� �3� sin�

0 0 0 0 1 �4� cos� �4� sin�

37777775

2666666666664

y�t�1

u�t�1

w�t�1

h�t�1

l�t�1

uct�1

u+ct�1

3777777777775
+�t
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2666666666664

y�t

u�t

w�t

h�t

l�t

uct

u+ct

3777777777775
=

2666666666664

� 1

� 2

� 3

� 4

� 5

0

0

3777777777775
+

2666666666664

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 � cos� � sin�

0 0 0 0 0 �� sin� � cos�

3777777777775

2666666666664

y�t�1

u�t�1

w�t�1

h�t�1

l�t�1

uct�1

u+ct�1

3777777777775
+

2666666666664

�1 �2 0 0 0

0 1� �9 0 0 0

0 �3 �4 0 0

0 �5 0 �6 0

0 �7 0 0 �8

0 �9 0 0 0

0 �9 0 0 0

3777777777775
�t

where �1 =

1


1+
6
; �2 = ���1


1
�
1+�
6+
1
2+
2
6

; �3 = ���2

3

�
3+�
7+
2
3+
2
7
;

�4 =

3


3+
7
; �5 = ���3


4
�
4+�
8+
2
4+
2
8

; �6 =

4


4+
8
; �7 = ���4


5
�
5+�
9+
2
5+
2
9

;

�8 =

5


5+
9
; �9 =

�
�+
2

; and

�t =

26666664

1 + 
6 �1� 0 0 0

0 
2 + � 0 0 0

0 �2� 
3 + 
7 0 0

0 �3� 0 
4 + 
8 0

0 �4� 0 0 
5 + 
9

37777775

26666664
"1t

"2t

"3t

"4t

"5t

37777775 :
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