
Melbourne Institute Working Paper Series

Working Paper No. 18/07

A Metropolis-in-Gibbs Sampler for Estimating
Equity Market Factors

Sarantis Tsiaplias

 



 

A Metropolis-in-Gibbs sampler for estimating equity 
market factors* 

 
 

Sarantis Tsiaplias 
Melbourne Institute of Applied Economic and Social Research 

The University of Melbourne 
 
 
 
 
 
 

Melbourne Institute Working Paper No. 18/07  
 

ISSN 1328-4991 (Print) 
ISSN 1447-5863 (Online) 

ISBN 978-0-7340-3250-8  
 

June 2007 
 
 
 
 
 

* I thank Guay Lim, Peter Summers, Michael Chua, and John Creedy for their 
helpful comments and suggestions. This work was funded by a Melbourne 
Research Scholarship. 

 
 

Melbourne Institute of Applied Economic and Social Research 
The University of Melbourne 

Victoria 3010 Australia 
Telephone (03) 8344 2100 

Fax (03) 8344 2111 
Email melb-inst@unimelb.edu.au 

WWW Address http://www.melbourneinstitute.com 

mailto:melb-inst@unimelb.edu.au�
http://www.melbourneinstitute.com/�


 2

Abstract 
 
A model incorporating common Markovian regimes and GARCH residuals in a persistent 

factor environment is considered. Given the intractable and approximate nature of the 

likelihood function, a Metropolis-in-Gibbs sampler with Bayesian features is constructed 

for estimation purposes. The common factor drawing procedure is effectively an exact 

derivation of the Kalman filter with a Markovian regime component and GARCH 

innovations. To accelerate the drawing procedure, approximations to the conditional 

density of the common component are considered. The model is applied to equity data for 

18 developed markets to derive global, European, and country specific equity market 

factors. 

 
JEL classification: C32, C51 
 
Keywords: Common factors, Kalman filter, Markov switching, Monte Carlo, GARCH, 
Equities 
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1. Introduction 
 
This paper seeks to construct a unified factor model incorporating various facets of return 

persistence, as well as co-movement possibilities in the time and discrete regime-

dependent contexts. The theoretical capacity for persistence and feedback in asset prices 

is discussed extensively in the behavioural finance literature (see, for example, De Long 

et al., 1990a,b; Daniel, Hirshleifer, and Subrahmanyam, 1998, 2001; Hong and Stein, 

1999). In turn, the specification of discrete regime-dependent volatility enables 

assessment of the effects of common shocks across the various volatility-regime 

structures, while asset-specific idiosyncratic volatility provides the capacity for deriving 

time and volatility-dependent measures of asset co-movement. To incorporate the desired 

persistence and co-movement properties, the factor model allows for persistent common 

factors and common regime switching, while sensitivity to the common factors is not 

restricted to the contemporaneous set of common information. Similarly, the asset-

specific (or idiosyncratic) components are not restricted to the zero-persistence or 

homoscedastic states. In this respect, asset-specific volatilities are specified as GARCH 

processes thereby implicitly accounting for residual heteroscedasticity.  

 
To facilitate the estimation and obtain the requisite factors, a dynamic common factor 

model is constructed and applied to developed national equity market returns. In theory, 

the model may be exactly estimated using Kalman filter with Markovian regimes and 

GARCH innovations. An exact likelihood function for such a filter cannot, however, be 

constructed (King, Sentana, and Wadhwani, 1994; Kim and Nelson, 1998). Given the 

intractable and approximate nature of the adopted model’s likelihood function, a 

Metropolis-in-Gibbs sampler is constructed to obtain exact Bayesian inferences for the 

dynamic factor model in the presence of persistence in the common and idiosyncratic 

components and their respective volatility structures. The sampler effectively constructs 

an exact Kalman filter in the presence of Markovian regimes and GARCH innovations. 

As such, the model may be interpreted in terms of King, Sentana, and Wadhwani (1994), 

but extended to incorporate common Markovian regimes and exact estimation.  
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The paper is structured as follows. Section 2 describes the adopted model structure and 

contrasts its properties with those of a basic model. Section 3 defines the data used in the 

empirical application of the adopted model. The estimation procedure is detailed in 

Section 4, while Section 5 considers approximations for accelerating the common factor 

drawing process. Section 6 examines the convergence properties of the sampler and the 

estimation results. The paper concludes with Section 7. 

 

2. The model structure 
 

This section defines a common factor structure that treats equity market volatilities as 

functions of Markovian regime switching and GARCH processes while concurrently 

providing for persistent common and idiosyncratic asset factors. The approach is 

contrasted with a basic model to facilitate comparison of the new model with generally 

adopted approaches. Global and European common factors are specified and common 

volatility is determined using global and European discrete Markovian regime processes.  

2.1  A basic model 
 
In the single factor case, the N-vector tr , representing excess returns for the N markets, is 

treated as a function of a single latent factor common to each market. 

 

[ ]It N t t t tr B W u BW u
′⎡ ⎤′= = +

⎣ ⎦
,      (1) 

1/ 2
t tu G z= ,         (2) 

t w tW wμ= + ,         (3) 

2
,~ (0, )t w tw N σ ,        (4) 

( ) 0 ,a bE W u a b t= ∀ ∈
�

,        (5) 

 
where B is a vector of factor sensitivities, IN  is an identity matrix of order N, Wt is a 

scalar representing information common to all markets at time t, t
�

 is the set of 

observations to time T, G is a diagonal matrix of order N and tz  is a multivariate standard 
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normal vector ( )~ 0 ,  It N Nz iidMVN . The identity loading on tu   identifies the 

idiosyncratic component. 

 
In the basic model, returns are assumed to be uncorrelated over time in both the 

idiosyncratic and common components. Accordingly, the lag polynomials in tu  and tW ,  

( ) ( )
,1 , ( )1 ... k i

i i i k iL L Lψ ψ ψ= − − −  and ( ) ( )
,1 , ( )1 ... k w

w w w k wL L Lφ φ φ= − − − , are subject to the 

restriction ( )i Lψ = ( )w Lφ = 1. The idiosyncratic components are deemed to incorporate 

information pertinent only to the relevant markets and are thereby presumed to be 

uncorrelated with the common factor. Given the lack of persistence in the idiosyncratic 

components, it is also assumed that investors place no emphasis on the historical path of 

the idiosyncratic component in constructing its expected value. In this respect, the 

conditional expectation of the idiosyncratic component is always zero and the model 

accords with the rational pricing forms that reject the existence of idiosyncratic pricing. 

Common factor pricing is accommodated through the provision for non-zero wμ .  

 
The volatility of the common component 2

,w tσ  is modelled as a discrete switching 

process:  

 
( )

2 2
, , , ,

1

M w

w t w m w m t
m

Sσ σ
=

= ∑ ,        (6) 

, 1 ,w m w m mσ σ+ > ∀ .        (7) 

 
The latent state variable , ,w m tS  takes the value unity if state ( )m m w= , 

( ) wm w M∈ , ( ){ } = :wM m m M w∈ ≤ ∈N N , and zero otherwise. The probability of state 

m prevailing is determined in accordance with the Markovian transition matrix: 

 

 
1,1, ( ),1,

1, ( ), ( ), ( ),

w M w w

w

M w w M w M w w

P P

P P

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Pr
"

# % #
"

,      (8) 
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where ( ) ( )1 1w M w M w
′ =Pr  and ( )1M w  is an M(w)-dimensional column vector of ones. The  

, ,a b wP , , wa b M∈ , represent individual transition probabilities such that 

( ), , , , , , 1Pr |a b w w m t w m tP S b S a−= = =  represents the probability of a transition from state a to 

state b.  

           
Pursuant to the time variation in the volatility component for the latent global factor and 

the time-invariance of G the representation for tr  is equivalent to the variance 

decomposition: 

 

( ), , 1,t w m t t t t tV r S I BPB G G−
′′= + = Γ Γ + ,     (9) 

 
where 1/ 2

t tBPΓ =  represents a time-varying matrix of factor loadings.  

 
In accordance with the unrealistic restriction on G, and along the lines of the regime-

switching or GARCH factor models (Diebold and Nerlove, 1989; Engle and Susmel 

1993; Kim and Nelson, 1998), variation in the scedastic function is provided for by the 

time-varying common volatility term 2
,w tσ . The conditional decomposition of the 

variance-covariance matrix as per t t
′Γ Γ + Σ  implies that, conditional on the tth state-

contingent volatility 2
,w tσ , the variance of the world factor is unity. Given the equivalence 

t t tBPB ′′ = Γ Γ   and observation of ,w tS , the extent of each market’s time-t sensitivity to 

the standardised common factor is determined by reference to the prevailing state at time 

t. In turn, given the unconditional treatment of G, all shocks to the ith idiosyncratic 

component belong to a single ith-market specific regime. It is, therefore, assumed that the 

time-varying degree of influence exerted on returns by the common factor depends solely 

on the common regime. The assumption implies that integration levels among the 

markets under consideration are determined by ( ),t w tSΓ  and identified by reference to 

the states (or regimes) defined by the state variable ,w tS . 
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The adoption of a sole global factor presumes that market relationships are not subject to 

regional or other factors. This approach is, however, consistent with the global derivation 

of the Capital Asset Pricing Model. Given a sole global factor and purely idiosyncratic 

factors (viz. idiosyncratic factors whose shocks do not covary), the covariance of any two 

markets may be explained pursuant to their state-dependent sensitivity to global 

information. Consequently, in accordance with generally observed financial market 

behaviour (consider, for example, King and Wadhwani, 1990; Bollerslev, Chou, and 

Kroner, 1992; King, Sentana, and Wadhwani, 1994), markets are presumed to covary at a 

level proportionate to the state of general volatility. 

2.2 Extensions to the basic model 
 
In the extended variant, the N-vector tr  is treated as a function of two latent factors. The 

first latent factor is equivalent to the world factor in the basic model and is common to 

each market, while the second factor is common to the European markets only (i.e. the 

second factor’s sensitivity to non-European markets is always zero). 

 

( ) ( )It N t tr C L u C L u
′⎡ ⎤′ ′= = +⎡ ⎤⎣ ⎦ ⎣ ⎦t tf f� � ,     (10) 

( ) 1/ 2
t tL u G zΨ = ,        (11) 

( )2
| 1 | 1t t t tG diag σ− −= ,        (12) 

2 2 2 2
| 1 1, | 1 2, | 1 , | 1...t t t t t t N t tσ σ σ σ− − − −

′⎡ ⎤= ⎣ ⎦ ,      (13) 

 
where ( )C L  is a polynomial in the lag operator L, tf�  is a K = 2 dimensional vector 

comprising the world and European factors tW  and tE  respectively, ( ) 1INL LΨ = −Ψ , 

Ψ1, G  are diagonal matrices of order N and tz  is a multivariate standard normal vector 

( )~ 0 , It N Nz iidMVN . The Euro-specific factor is partially identified through the 

imposition of zero-restrictions on the European component of ( )C L  for the non-

European markets in the dataset. In contrast to the basic approach, the idiosyncratic 

factors are not restricted to the zero-persistence property. In this respect, for ( ) INLΨ ≠ , 
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the N-dimensional idiosyncratic vector ut will be autocorrelated. The presence of a 

significant and persistent idiosyncratic term indicates that a historic pricing error is 

considered relevant in the construction of future prices.  Equivalently, the persistent 

idiosyncrasy may be interpreted as a form of idiosyncratic feedback (see, for example, 

Daniel, Hirshleifer, and Subrahmanyam 1998, 2001).   

 
The model acknowledges the potential for time-varying idiosyncratic variances through 

the conditionally time-varying matrix G. The diagonal elements of | 1t tG −  are modelled as 

GARCH processes such that, given | 1t tG G− ≠ , idiosyncratic shocks are conditionally 

heteroscedastic. In the basic scenario, idiosyncratic volatility follows the stylised constant 

form implying that time-varying volatility in asset returns is restricted to the common 

volatility component. The conditional extension to G, in addition to providing certain 

estimation advantages, enables the treatment of volatility across the common and 

idiosyncratic components in a time-varying context.  

 
The diagonality of ( )LΨ  restricts the manner in which lagged effects may be 

transmitted; idiosyncratic persistence is permitted within but not between markets. 

Additionally, the diagonal form for G treats idiosyncratic shocks endogenously thereby 

restricting the transmission effects of an idiosyncratic shock to the market responsible for 

generating the shock. The joint diagonality of ( )LΨ , G has three broad implications: 1) 

the idiosyncratic factors do not contain information stemming from other markets, 2) 

lagged effects and shocks particular to market i are restricted to market i, and 3) the 

transmission of information across markets is restricted to lagged effects and shocks 

common to the market set.  

 
The global (or world) factor is extended as per the following: 

 
( ) ( ), ,w w t w t w t tL L W wφ φ μ= = +f ,      (14) 

( )

, , , ,
1

M w

w t w m w m t
m

Sμ μ
=

= ∑ .        (15) 

 



 9

The basic model restrictions, ( ) 1w Lφ =  and ,w t wμ μ= , imply that the expected value of 

the global factor is captured entirely by the time-invariant intercept term wμ . The 

relaxation of the persistence restriction introduces an additional source of information for 

the construction of expected returns. In this respect, ( ) 1w Lφ ≠  recognises the potential 

for ( )th-orderwk effects in tW  and provides a capacity for treating common persistence as 

a relevant pricing construct. Persistent common effects allow for the possibility of serial 

correlation in equity returns and suggest that the pricing effects of common shocks may 

be dissipative (assuming that the roots of ( )w Lφ  are outside the unit circle). This 

approach is contrasted with the restriction ( ) 1w Lφ =  and the associated implication that 

common effects are immediately and fully digested by financial markets. In the case of 

non-zero , | 1w k kφ ≥ , the global factor is associated with a time-varying expectation and the 

information retrieved through ( )w Lφ  may be interpreted as capturing a dimension of 

autocorrelation in the risk-premium. Persistence effects are transmitted to all markets 

with applicable non-zero loading terms in ( )C L .  The extension to a time-varying 

intercept term ,w tμ  also acknowledges the potential for time variation in the risk-

premium. In the case, ( ) 1w Lφ =  and ( )C L C= , the expected return attributable to the 

global factor is time varying pursuant to its proportionality to the global intercept ,w tμ .  

 
A regional European factor is also introduced as a means of evaluating the impact of 

region-specific information. The regional component provides the capacity for treatment 

of European markets in a homogeneous manner such that European market prices are 

determined by reference to global, idiosyncratic or regional sources. Clearly, the 

consideration of regional factors may be extended to the non-European case. The 

orthogonal European factor is modelled using the same approach adopted for the global 

factor. 

  
Given the adoption of two factors, the representation for tr  is equivalent to the variance 

decomposition: 
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( ) ( ) ( )* * * * * *
,{ } ,{ } 1, , I It w t e t t N t N t t tV r S S I C L P C L C P C−

′ ′ ′= = = Γ Γ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦� , (16) 

 

where *
{ } 1,t t t tP V u S I −

⎛ ⎞′⎡ ⎤′ ′= ⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠
tf��  is a block-diagonal matrix containing the variance-

covariances of the common and idiosyncratic components, * * *1/ 2
t tC PΓ = , and { }tS  is the 

set of states constituting the state path to time t. *
tP�  depends on the entire volatility path 

to time t, { }2 2 2 2
, , 1, ,, , ,..., : 0,1, 2,...w i e i i N i i tσ σ σ σ = , and the common and idiosyncratic 

autocovariances captured through ( ) ( ),  L LΦ Ψ . Note that *
tP  is augmented with the 

relevant lagged variance terms such that the lag operator in ( )C L  is unnecessary.  

 
The transmission of lagged effects and shocks between the European and world factors is 

determined as: 

 
( )

( )
,

,

0
0

w tw t t

e te t t

L W w
L E e

μφ
μφ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
,     (17) 

2
,

, , 2
,

0
,

0
t t w t

t w t e t
t t e t

w w
H E S S

e e
σ

σ

⎡ ⎤′ ⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= = ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

� ,     (18) 

1, 1 ( ), 1

1, ( ) ( ), ( )

w w e M e w

w e M e e M e e M e

P P

P P

= = = =

= = = =

⎡ ⎤
/⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ /⎣ ⎦⎢ ⎥⎣ ⎦

"
# % #

"

w M(w),M(e)

M(e),M(w) e

Pr 0
Pr

0 Pr
,   (19) 

 
where ,0a b/  is an a by b matrix of zeros. 

 
The transmission restrictions imply: 1) Wt, Et are purely autoregressive processes in that 

lagged effects may not be transmitted across factors, and 2) The first diagonal element of 

tH�  and the first diagonal partition of Pr are solely responsible for shocks to the world 

factor (with an analogous interpretation for European shocks). Given the restrictions, the 

European factor is uncorrelated with the world factor. Clearly, the two independent state 
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vectors with transition matrices Prw and Pre are equivalent to a single state vector with 

transition matrix Pr. In this sense, the common factor shocks can be interpreted as arising 

from an appropriately restricted system of ( ) ( )M w M e+  states.  

 
Conditioning on the factors, the expected return structure differs in the extended 

formulation in terms of the addition of a regional factor, time variation in the common 

factor intercepts, the consideration of historic pervasive information, and the modelling 

of the idiosyncratic component as a persistent process. In the situation, , 0i ec = , 

( )i ic L c= , and ( ) 1i Lψ = , expected returns are determined by contemporaneous 

association with the global factor as per the basic case. It should be noted, however, that 

the expected value for the global factor is influenced by ,w tμ  and ( )w Lφ  such that the 

restrictions ,w t wμ μ= ,  ( ) 1w Lφ =  are also relevant in collapsing to the basic expectations 

structure.   

 
Finally, the ith market’s volatility under the basic model is determined as a function of 

sensitivity to the sole common factor and the constant volatility of the market specific 

component. In the extended scenario, volatility is approximated by reference to the ith 

market’s sensitivity to both contemporaneous and historic common information, the 

covariance structure of the common and idiosyncratic factors, the common volatility 

regimes and the conditional Markovian volatilities of the idiosyncratic components.  

3. Data 
 
Returns data are obtained from the set of U.S.-dollar denominated MSCI (Morgan 

Stanley Capital International) developed country indices.1 The indices are used to 

construct weekly returns during the period commencing the first week of Jan. 1980 and 

ending the second week of Sept. 2004 (T = 1289) for 18 of the developed markets. The 

18 markets are Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong 

Kong, Italy, Japan, the Netherlands, Norway, Singapore, Spain, Sweden, Switzerland, the 

                                                 
1 Refer to www.mscibarra.com. 
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U.K. and the U.S. Five of the 23 markets designated as developed are omitted due to lack 

of data.2   

 

Excess returns are constructed by reference to the appropriately adjusted 13-week U.S. 

Treasury Bill such that the continuously compounded excess return (multiplied by 100) 

for country i at time t is: 

 
( ), , ,100 ln 1i t i t f tr r r= + −� � ,       (20) 

 
where ( ), , , 1 1i t i t i tr z z −= −� , ( )1/52

, ,1 1f t f tr r= + −� , ,i tz  is the index value for country i at 

time t, and ,f tr  is the annualized decimal yield on the 13-week (U.S.) Treasury Bill at 

time t.   

4. Estimation framework 
 
Given the Markovian properties of the asset factor levels, the common regimes and the 

idiosyncratic volatilities, an exact likelihood equation is not available. In any case, 

approximate maximum likelihood estimation over the set of possible outcomes poses an 

intractable problem. A Metropolis-in-Gibbs sampler is, therefore, constructed to 

overcome the intractable nature of the maximum likelihood estimator and provide draws 

from the exact joint posterior density of the parameter set.  The MCMC sampler spends 

the greatest portion of its time drawing from the full conditional density of the common 

factors. In seeking to accelerate the estimation time for each pass of the sampler, 

approximations to the conditional density of the common factors are constructed and their 

empirical accuracy is assessed in the next section.    

 
The sampler is used to obtain draws from the posterior density of the parameter set by 

iterating through the following steps:  

 
Step 1 Draw the common factor set ,t tW E  using the procedure detailed in Section 4.1. 

                                                 
2 Finland, Greece, Ireland, New Zealand, and Portugal are omitted. 
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Step 2 Draw the factor loading matrix C and the N idiosyncratic persistence terms iψ , 

1, 2,...,i N= , (Appendix A). 

Step 3 Draw the factor persistence vectors φ  and the factor intercepts μ  for the global 

and European factors (Appendix A). 

Step 4 Obtain the idiosyncratic variance matrix tG  by drawing the GARCH terms 

, ,i i iϖ α β  for each market i, 1, 2,...,i N= , (Section 4.2).  

Step 5 Draw the regime-dependent global and European factor variances (i.e. the vector 
2
wσ  for the global factor and the vector 2

eσ  for the European factor) (Appendix 

A). 

Step 6 Draw the regime vectors , ,,w t q tS S  for the global and European factors and use 

regimes to obtain the global and European probability transition matrices 

(Appendix A). 

4.1 Generating the common factors 
 
(a) Derivation of the data generating process 
 

The chosen model assumes a single universal factor and a regional factor pertaining to 

European markets as the K = 2 common factors in addition to N country factors for a total 

of N + K factors. Adopting ( ) ( ),1 ,1,1 ,1,2 ,2 ,2,1 ,2,2,  i i i i i ic L c c L c L c c L= + = + , the model is 

given by:  

  
( ) ( ), ,1 , ,2 , ,

,1,1 , ,1,2 , -1 ,2,1 , ,2,2 , -1 , .
i t i universal t i Europe t i t

i universal t i universal t i Europe t i Europe t i t

r c L c L u

c c c c u

= + +

= + + + +

f f
f f f f

  (21)  

 
To capture common and idiosyncratic persistence, the common factors are modelled as 

third-order stochastic difference equations whereas the country factors are modelled as 

first-order stochastic difference equations. This model may be represented in state-space 

form as: 
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( ) ( )1 2 It N t t tr C L C L W E u
′⎡ ⎤′= ⎡ ⎤⎣ ⎦ ⎣ ⎦
,     (22) 

     
where ( ) 2

1 1, 2, 3,w w wC L C C L C L= + + , ( ) 2
2 1, 2, 3,e e eC L C C L C L= + + , and  The restriction 

( )3, 0C ⋅ =   is imposed thereby restricting the observed vector tr  to the contemporaneous 

and immediately preceding common factor values. For convenience, the state-space form 

is re-arranged as per: 

 
*

1 2 , ,0 I 0 It N K N t N K Nr C C u C
′⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤= / = /⎣ ⎦ ⎣ ⎦⎣ ⎦

� � �
t t -1 t -2 tf f f f , (23) 

* * * * *
t tvμ= +Φ +t t -1f f ,        (24) 

*
1 1 2 2 1, 17, 18, ... t t t t t t t t t tW E W E W E u u u− − − −

′⎡ ⎤= ⎣ ⎦f ,  (25) 

*
, , 0 0 0 0 0 ... 0 0t w t e tμ μ μ ′⎡ ⎤= ⎣ ⎦ ,    (26) 

*Φ = *
2

0
0
Φ /⎡ ⎤
⎢ ⎥/ Φ⎣ ⎦

,        (27) 

,1 ,2 ,3

,1 ,2 ,3

0 0 0
0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

w w w

e e e

φ φ φ
φ φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,     (28) 

[ ]( )*
2 1 2 3 16 17 18diag ψ ψ ψ ψ ψ ψΦ = … ,    (29) 

( ) 1,* *

2,

t
t t

t

Q
E v v

Q
⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

,         (30) 

2
,

2
,

1, 3 , 2

0
0
0 0

0
0 0
0 0
0 0

w t

e t

t K N KQ

σ
σ

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= /⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,        (31) 
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( )( )2 2 2 2 2 2
2, ,3 1 2 3 16 17 180 ...t N KQ diag σ σ σ σ σ σ⎡ ⎤= / ⎣ ⎦ ,   (32) 

where ( )diag x  is a diagonal matrix with the elements of x on its diagonal, ( )* *
t tE v v ′  is an 

N+3K by N+3K matrix, and 
1 2,0L L/  is an 1L  by 2L  matrix of zeros. 

 
Conditional on Ψ, *Φ is no longer dependent on N and the system transition equations 

may be represented by the 3K < N dimensions of Φ. This alternative state-space form will 

be used to estimate the latent common factors and is represented by (33)-(43).  

( )

,
1, 1, 1 1,1

,
2, 2, 1 2,2

, 1

, 1
17, 17, 1 17,17

, 2
18, 18, 1 18,18

, 2

w t
t t t

e t
t t t

w t
t

e t
t t t

w t
t t t

e t

r r
r r

L r diag B
r r
r r

εψ
εψ

εψ
εψ

−

−
−

−
−

−
−

−

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥Ψ = − = +⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

f
f

f
f
f
f

# # ##
⎥
⎥
⎥
⎥
⎥

,   (33) 

* * * *
1,1 2,1 1,2 2 1,1 2,2 2 2,1 2 1,2 2 2,2B c c c c c c c c= ⎡ ⎤−Φ −Φ −Φ −Φ⎣ ⎦ ,  (34) 

( ) ( )( )2
1 1t t t tE I diag E Iε ε σ− −

′ = ,      (35) 

( )2 2 2 2
, | 1 1 , , , , | 1

1 1

QP

i t t i t i i p i t p i q i t q t q
p q

E Iσ σ ϖ α ε β σ− − − − − −
= =

= = + +∑ ∑ ,   (36) 

, , 1, ,1 ,2 ,3

, , 1, ,1 ,2 ,3

, 1 , 2

, 1 , 2

, 2 , 3

, 2 , 3

0 0 0
0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

w t w tw t w w w

e t e te t e e e

w t w t

e t e t

w t w t

e t e t

μ φ φ φ
μ φ φ φ

−

−

− −

− −

− −

− −

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣

f f
f f

f f
f f
f f
f f

0
0
0
0

t

t

w
e

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
+⎥ ⎢ ⎥

⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎦

,  (37) 

( )

, , , ,
1

M w

w t w m w m t
m

Sμ μ
=

= ∑ ,        (38) 

( )

, , , ,
1

M e

e t e m e m t
m

Sμ μ
=

= ∑ ,        (39) 
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( )

2
,

2
,

1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

w t

e t

t t t t tE v v I S H

σ
σ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

′ = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,    (40) 

[ ]0 0 0 0t t tv w e ′= ,       (41) 

( )
2

, , , ,
1

M w

w t w m w m t
m

q Sσ
=

= ∑ ,        (42) 

( )
2
, , , ,

1

M e

e t e m e m t
m

q Sσ
=

= ∑ ,        (43) 

 
where 1,1c , 2,1c  are the contemporaneous loadings on the global and European factors 

respectively (such that 1,2c , 2,2c  are the lagged loadings). It is important to note that the 

loadings for the non European markets are, by definition, set to zero for 2,1c , 2,2c . To 

ensure identification of the common factors, the contemporaneous universal loading for 

the U.S. market and the contemporaneous European loading for the German market are 

normalised to unity. The values 1 3M =  and 2 2M = , pertaining to equations (38)-(39) 

and (42)-(43), are chosen as the minimal set of regimes that account for conditional 

heteroscedasticity in the global and European factors respectively.  

 
(b) Derivation of the full conditional density 

 
The full conditional density for the common component is: 

 

( ) ( )
( )
( )
( )

*, , , , , , , , , , ,

 , , ,

 

, , , , , , , , , ,

f F R S f R F C a

f F S

f S P

f C a P

α β ϖ α β ϖ

α β ϖ

σ σ σ θ ψ σ σ σ

φ γ ϖ

ψ σ σ σ φ γ ϖ

∝

x

x

x

  (44) 
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where { }* , , , , , ,C a Pθ ψ φ γ ϖ= , { }, ,...,F = 1 2 Tf f f , { }1 2, ,..., TR r r r= , S and P are the 

common regimes and transition probabilities respectively, C is the set of loadings on F, 

{ }, ,α β ϖσ σ σ  is the set of GARCH parameters and ,γ ϖ  define the intercept and 

volatility parameters for F.3  

 
Given the T-dimensionality of F, the dependence on the regime process S  and the 

GARCH set { }, ,α β ϖσ σ σ , the provision of an exact draw from the entire block F is an 

intractable problem. Consequently, the entire block F  is drawn in T elements pursuant to 

the full conditional density of tf . 

 

( ) ( )
( )
( )
( )

*, , , , , , , , , , , ,

 , , ,

 

, , , , , , , , , .

tf F R S f R F C a

f F S

f S P

f h a P

α β ϖ α β ϖ

α β ϖ

σ σ σ θ ψ σ σ σ

φ γ ϖ

ψ σ σ σ φ γ ϖ

≠ ∝tf

x

x

x

  (45) 

 
Given the Markovian nature of F the conditional density ( ), , ,f F S φ γ ϖ  may be written 

as ( ), , , ,
i

f S φ γ ϖ∏ i i -1f f . Accordingly, the density ( ), , ,f F S φ γ ϖ  depends on tf  only 

via the product of the terms ( ), , , ,f S φ γ ϖt+1 tf f  and ( ), , , ,f S φ γ ϖt t -1f f . In turn, neither 

( ) f S P  nor ( ) , , , , , , , , ,f C a Pα β ϖψ σ σ σ φ γ ϖ   depend on the value taken by tf . The full 

conditional density of tf  is, therefore, proportionate to: 

 

( ) ( )
( )
( )

*, , , , , , , , , , , ,

, , , ,

, , , , .

tf F R S f R F C a

f S

f S

α β ϖ α β ϖσ σ σ θ ψ σ σ σ

φ γ ϖ

φ γ ϖ

≠ ∝t

t+1 t

t t -1

f

x f f

x f f

   (46) 

 
 
                                                 
3 The simulation is undertaken pursuant to redefinition of the common intercept as , , 1k t k t txμ γ −

′= . 
Accordingly, a return intercept a may therefore be identified. 
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(c) Drawing from the full conditional density 

 
Given the difficulty of drawing from the full conditional density of the tth element of F, 

draws are made from a proposal density. At every tth element of the block F, a proposed 

value p
tf�  is accepted according to the Metropolis-Hastings algorithm (see Tierney, 1994; 

Chib and Greenberg, 1995). The algorithm accepts draws with probability: 

 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

*

*

, , , , , , , , , , , ,
Pr min  ,1

, , , , , , , , , , , ,

min ,1 ,

p p
tp

t

p p

f F R S C a P p

f F R S C a P p

f p

f p

α β ϖ

α β ϖ

ψ σ σ σ φ γ ϖ

ψ σ σ σ φ γ ϖ
≠

≠

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

t t
t t

t t

t t

t t

f f
f , f

f f

f f

f f

� �
� �

� �

� �

� �

 (47) 

  
where ( ) ( ) ( ) ( )* , , , , , , , , , , , , , ,f f R F C a f S f Sα β ϖψ σ σ σ φ γ ϖ φ γ ϖ=t t+1 t t t -1f f f f f� � � � � , ( )p tf�  

is a proposal density in the support of the full conditional density ( )f ⋅tf�  and tf�  is the first 

K-vector in tf . 

 
The terms in ( )*f ⋅  are evaluated as:  

 

( ) ( )
( )

1 1, , , , , , , , , , , , , ,

0 , ,

i i i
i t

i N i
i t

f R F C a f r R F C a

MVN y B G

α β ϖ α β ϖψ σ σ σ ψ σ σ σ− −
∀ ≥

∀ ≥

=

= −

∏

∏

i

i

f

f
 (48) 

( )
2

,
2 2

,

0
, , , , 0 ,

0
t w t

t e t

w
f S MVN

e
σ

φ γ ϖ
σ

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟= ⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

t t -1f f� � ,    (49) 

 
where { }1 1 2 1, ,...,i iR r r r− −=  and { }1 , ,...,iF − = 1 2 i -1f f f .  ( ), , , ,f S φ γ ϖt+1 tf f� �  is evaluated in an 

analogous fashion to (49). Draws are proposed in natural order commencing at t = 1 and 

ending at t = T. 
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(d) Derivation of the proposal density ( )p ⋅  

 
Assume, foremost, that the set of idiosyncratic GARCH variances vR  is observed. 

Pursuant to this assumption the GARCH set { }, ,α β ϖσ σ σ  is irrelevant. The full 

conditional density of the set of state vectors { }, ,...,1 2 Tf f f  may be written as: 

 
( ) ( )

( )

( )
1

1

 , ,  , ,...,  , ,  

, ,..., , , ,

, , , .

T v T v

T

T v
t

T

T v
t

p R R p R R

p R R

p R R

=

=

⋅ = ⋅

= ⋅

= ⋅

∏

∏

T 1 2 T

t t+1 t+2 T

t+1
t

F f f f

f f f f

f F

    (50) 

 
Given vR , and suppressing further reference to the conditional set vR  for notational 

convenience, the tth conditional density ( ), , ,T vp R R ⋅t+1
tf F  may be rewritten according to 

(see Chib and Greenberg, 1996): 

 

( ) ( ) ( ) ( ), , , , , , , , ,T t t tp R p R p R p R R⋅ ∝ ⋅ ⋅ ⋅t+1 t+1 t+1
t t t+1 t t t+1f F f f f F f f .  (51) 

 
It is instructive to rewrite ( ), , , ,tp R R ⋅t+1 t+1

t t+1F f f  as: 

 

( ) ( ), , , , , ,t tp R R p R⋅ ⋅t+1 t+1 t+1
t t+1 t t+1F ,f f F f f .     (52) 

  
The right hand side density of (52) can be written as a product of conditional densities: 

 
( )
( )
( ) ( )
( ) ( )
( ) ( ) ( ) ( )

, , ,

, ,..., , , ,

, ,..., , , , ,..., , , ...

... , , , , , ,

, , ... , , .

t

t

t t

t t

p R

p R

p R p R

p R p R

p p p p

⋅

= ⋅

= ⋅ ⋅

⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

t+1
t t+1

t+1 t+2 T t t+1

T t t+1 T -1 T -1 t t+1 T -2

t+2 t t+1 t+1 t t+1

T T -1 T -1 T -2 t+2 t+1 t+1 t+1

F f f

f f f f f

f f f f f f f f

f f f f f f

f f f f f f f f

    (53) 

 



 20

In accordance with the Markovian nature of the state vector, ( ), ,..., , ,tp R ⋅t+k t t+1 t+k -1f f f f  

collapses to ( ),p ⋅t+k t+k-1f f  such that { } ( )1 2 , ~ ,t k t k t k t kMVN Hμ+ − + − + +⋅ +Φt+k t+k-1f f ,F f . This 

ensures the validity of moving from the third to the fourth line of (53) such that only the 

immediately preceding state is relevant and the distribution of the current state tf  is 

unaffected by ( ), , ,tp R ⋅t+1
t t+1F f f . 

 
The left hand side density of (52), ( | , , , )tp R R ⋅t+1 t+1

t t+1F ,f f , may also be derived as a 

product of conditional densities: 

 

( ) ( ) ( ) ( ) ( ), , , , , ... , , .tp R R p r p r p r p r⋅ = ⋅ ⋅ ⋅ ⋅t+1 t+1
t t+1 T T T -1 T -1 t+2 t+2 t+1 t+1F ,f f f f f f (54) 

    
Given the form for t kr + , the density of the (t+k)th returns vector conditional on the state 

t+kf  is independent of any other state or the returns history up to time t+k. Therefore a 

draw from ( ), ,Tp R ⋅t+1
tf F  is based on ( ) ( ) ( ) ( ), , , , ,t t tp R p R p R p⋅ ⋅ = ⋅ ⋅t t+1 t t t+1 tf f f f f f .  

 
(e) Procedure for drawing from the proposal density ( ), ,Tp R ⋅t+1

tf F  

 
Run the Kalman filter to generate |,  t tPt|tf . , , ,t tB G μΦ  and tH  form the system matrices 

used for the Kalman filter extraction of the state vector. 

 
The relevant equations are (suppressing the implied conditioning on vR  and the regime 

set S):  

 
( )1, |t s sEη = − = −t t t t|sf f f f ,       (55) 

( )2, 1t t ty E y y y y Bη −= − = − = −t t t t|t -1 t|t -1f ,     (56) 

( )1t tE μ−= = +Φt|t -1 t t -1|t -1f f f ,       (57) 

( )1 1, | 1 1, | 1t t t t t tP E P Hη η− − −
′ ′= = Φ Φ +t|t -1 t -1|t -1 ,     (58) 

( ) 2,t t tE Kη= = +t|t t t|t -1f f f ,       (59) 
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( ) 1
1, | 1, | | 1t t t t t t t tP E P P B Q BP P K BPη η −

−
′ ′= = − = +t|t t|t -1 t|t -1 t|t -1 t|t -1 t|t -1 ,  (60) 

( )| 1 1 2, 2,t t t t t tQ E BP B Gη η− −
′ ′= = +t|t -1 ,      (61) 

( ) ( ) 1
1

1 1, | 1 2, 1 2, 2, | 1 | 1t t t t t t t t t t t tK E E P B Qη η η η
−

−
− − − − −

′ ′ ′= = .    (62) 

 
The filter is initialised as per: 

 
( ) 1 *

0|0 3I K μ−= −Φf ,        (63) 

* * * 0 0 0 0w w e eP Pμ μ μ
′⎡ ⎤′ ′=

⎣ ⎦
,      (64) 

( ) ( )( ) ( )2

1
*

0|0 3
I

K
vec P vec H

−

= −Φ⊗Φ ,     (65) 

( )* 2 * 2 * 0 0 0 0w w e eH diag P Pσ σ⎡ ⎤′ ′=
⎣ ⎦

,     (66) 

where *
qP  is the steady state transition probability for the qth common factor (refer to 

Appendix A). 

 

The term ( )1t t t tG E Iε ε −
′=  is derived using the incumbent values of all parameters for 

the relevant iteration of the Markov chain. As such E Y B′= − incF , where incF  is the 

incumbent draw of F  and the ith row of E  contains iε ′ . Given the Gaussian assumption 

on the error terms, the filter gives us the optimal time-t estimates of the factors and their 

variances. The estimates are also the optimal time-t linear estimates of the factors 

irrespective of the validity of the Gaussian assumption.  

 
To simulate the factors, the time-t estimates t|tf  are updated using the entire set of 

observed information TI  to obtain the estimates ( ) ( )1 | 1 |,  T T t T t TE P E η η ′= =t|T t t|Tf f . A 

procedure for obtaining the ‘smoothed’ estimate t|Tf  is given in Kim and Nelson (1998).  
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4.2 Generating the idiosyncratic variance Gt 

 
The idiosyncratic variance tG , is modelled as a set of GARCH (P, Q) processes: 

 

( )2 2 2 2 2
, , | 1 1 , , , , | 1

1 1

|
QP

i t i t t i t i i p i t p i q i t q t q
p q

E Iσ σ σ ϖ α ε β σ− − − − − −
= =

= = = + +∑ ∑ ,  (67) 

 
where the parameters { }, ,

i
ω α β  are estimated using a straightforward amendment of the 

approach in Nakatsuma (1998, 2000). 

 
Conditional on ,i tu  and iψ , ,i tε  is observed as per , , , 1i t i t i i tu uε ψ −= − . Given the 

diagonality of tG , and ,i tε , market i’s idiosyncratic component is unaffected by shocks 

originating in other markets such that:  

 
( )2

1i tE Iσ −  
= ( )2

, 1 , 2 ,0 , 1 , 2 ,0, ,..., , , ,...,i i t i t i i t i t iE σ ε ε ε ε ε ε− − ≠ − ≠ − ≠   =  ( )2
, 1 , 2 ,0, ,...,i i t i t iE σ ε ε ε− − . 

 
The posterior density for the set of GARCH parameters pertaining to market i,{ , , }iω α β , 

is given by: 

 
{ }( ) ( ) { }( ), , , , , , ,i i i i ti i

p r F c f r I pϖ α β ψ ϖ α β∝     (68) 

 ( ) { }( )
2
,/ 2 1

2, , , , , , 2 exp
2

i tT
i T i i i i ti

t t

f r I f r F c a
ε

ψ ϖ α β π σ
σ

− − ⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
∏  (69) 

 
where { }( ), ,

i
p ϖ α β is the prior density.4 

 
In contrast to Nakatsuma’s adoption of a κ-variate normal proposal density, a κ-variate  t 

proposal density is used (see, for example, Bauwens and Lubrano, 1998): 

 

{ }( ) ( )( )
( )

1 21/ 22
/ 2 / 2, , , , , , ,  1

/ 2i i i ii
g r F c a

λ κ

κ κ

λ κ δϖ α β ψ λ
λ π λ λ

+
−

−Γ + ⎛ ⎞
= Δ +⎜ ⎟Γ ⎝ ⎠

�� , (70) 

                                                 
4 A normal prior density is used for the GARCH terms. The independent prior mean (variance) for each 
term is zero (ten). 
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where ( ) ( )1δ δ μ δ μ−′= − Δ −� � , ( ), , ,i i iE r F cμ δ ψ= , ( ) 2cov , , ,i i ir F c λ
λδ ψ −Δ = = Δ� ,  

( )i i iδ ϖ α β
′′ ′= , λ  is the degree of freedom parameter for the ( ), ,t δ μ λΔ�  density 

and κ is the dimension of δ .5  

 
To ensure that the unconditional idiosyncratic volatility is always defined the draw δ  is 

accepted subject to its satisfaction of the restriction: 

 

0
1

i

i i
p q

ϖ
α β

∀ ∀

− −∑ ∑
� .         

 
(a) Sampling { },

i
δ ϖ α=  

 
The hyper-parameters ,ω αμ ,  ,ω αΔ  are obtained as per Nakatsuma (1988, 2000). Given 

estimates of { }( ), , , , ,i ii
E r Fω αμ ω α β= ⋅  and { }( ), cov , | , , ,i ii

r Fω α ω α βΔ = ⋅ , a draw 

{ }ˆ ˆ ˆ,
i

δ ω α= , ( ), ,
ˆ ~ , ,t ϖ α ϖ αδ μ λΔ�  is obtained by: 

 
1/ 2

,
ˆ W Zϖ αδ μ= + ,        (71) 

( )( ) ( ) ( )( )1 12 2
, ,2 ,W diag diagλ ϖ α λ ϖ αχ κ λ χ κ λ

− −
= − Δ = Δ�    (72) 

( )~ 0 , IZ N κ κ ,        (73) 

 
where ( )2

λχ κ  is a κ-vector draw from the chi-square distribution with λ degrees of 

freedom and κ is the dimension of { },
i

δ ω α= .  

 
The draw δ̂  is accepted with Metropolis-Hastings based probability: 

 

                                                 
5 The estimation was undertaken using 5λ = . 
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( ) ( )
( )

( )
( )

ˆ , , , , , , , , , , ,ˆPr , min ,1
ˆ, , , , , , , , , , ,

i i i i i i i i i i i i

i i i i i i i i i i i i

p r F c a g r F c a
p r F c a g r F c a

δ β ψ δ β ψ λ
δ δ

δ β ψ δ β ψ λ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, (74) 

 
where iδ  is the incumbent { },

i
ω α , and ( )ˆPr ,δ δ  is the probability of replacing the 

incumbent with the draw ˆpδ δ= . 

 
(b) Sampling iδ β=  

 
Given the estimates

 
{ }( ), , , ,i ii

E r Fβμ β ω α= ⋅ , { }( )cov , , , ,i ii
r Fβ β ω αΔ = ⋅  a draw 

ˆ
îδ β=  is obtained by: 

 
1/ 2ˆ W Zβδ μ= + ,        (75) 

( )( ) 12 ,W diag λ βχ κ λ
−

= Δ�        (76)  

( )~ 0 , IZ N κ κ .        (77) 

 
where κ is the dimension of iβ . The estimates βμ , βΔ  are obtained pursuant to 

Nakatsuma (1988, 2000). As per the case for { },
i

ω α , the draw δ̂  is accepted with 

Metropolis-Hastings based probability: 

 

( ) { }( )
{ }( )

{ }( )
{ }( )

ˆ , , , , ,ˆPr , min ,1
ˆ, , , , ,

i ii i

i ii i

p g

p g

δ ϖ α δ ϖ α λ
δ δ

δ ϖ α δ ϖ α λ

⎛ ⎞⋅ ⋅
⎜ ⎟=
⎜ ⎟⋅ ⋅⎝ ⎠

,   (78) 

 
where iδ  is the incumbent iβ . 

5. Approximating the conditional density of the common component 
 
A draw from the exact full conditional density ( )| , ,th F R≠ ⋅tf  requires computation of the 

set of conditional volatilities { }2
,i k i k tσ ∀ ≥ . To obtain the entire common set F the set of 

conditional volatilities must, therefore, be computed T times. As a means of speeding up 
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the sampling process, two approximations to the full condition density ( ),h F R ⋅  are 

derived. In the first case ( )1 , , ,vh F R S R ⋅ , vR  is the set of conditional variances 

determined using the existing draw of the common component F  and the relevant 

parameter set. In the second case ( )2 , , ,vh F R S R ⋅ , vR  is determined by replacing 2
te  with 

its conditional expectation ( )2
1t tE e I −  (see King, Sentana, and Wadhwani, 1994). In 

contrast to the T-block approach adopted in the exact case, the proposal densities draw 

the common factor as a single block. 

 

Three models of sample size T = 415 and number of variables N = 15 are simulated to 

assess the accuracy of the common factor conditional density approximations (note T = 

415, N = 15 is less than the T = 1289, N = 18 pertaining to the weekly equity market 

returns). For the simulated models, the μ  term is generalised such that the factor 

intercept depends on exogenous data as per 
tt S txμ γ ′= .6 The ,a ψ  parameters are 

restricted to zero for the first two models but set to non-zero values for the third model. 

The first two models are distinguished on the basis of the persistence parameters for the 

common component and conditional volatility terms. Model 1 restricts the common 

factor persistence φ  to zero but sets higher values for ,α βσ σ . Model 2 induces non-zero 

common factor persistence coupled with low values of ,α βσ σ  such that α βσ σ+  is 

clearly less than unity. Model 3 induces persistence in both the common factor and 

conditional volatility components and sets α βσ σ+  to values closer to unity than either of 

the previous models. The third model is also estimated using draws from the full 

conditional density ( ),h F Y ⋅  as a benchmark for assessing the performance of the two 

approximate densities for a full-scale model.  

 

                                                 
6 The exogenous variables are the difference of the log of: Monthly New One Family Houses Sold (United 
States), Monthly Industrial Production Index (United States). The resulting log-differences span the period 
December, 1969 to June, 2004. 
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The estimates for the parameters of greatest interest (the common component parameters) 

across the three models are presented in Tables 1-4.7 Pursuant to Table 1, it is readily 

observed that the latent regime structures are accurately captured by both approximations 

to the full conditional density of the common component for all three simulated models. 

The regime selection accuracy is above 90% for both approximations, and is equal to the 

accuracy of the full conditional density for the third and most comprehensive simulated 

model. The 95% highest posterior density (HPD) bands for the first regime count (i.e.: 

the number of times the first regime is observed in the simulated regime vector) also 

encompass the true values across all three simulated models irrespective of the 

approximation adopted. 

 

Table 1 Descriptive statistics regarding common regimes across the three 
simulated models 

 
  ( )

1
, , ,

v
h F R S R ⋅ ( )

2
, , ,

v
h F R S R ⋅  ( ),h F R ⋅  

 Actual Median 95% HPD Median 95% HPD Median 95% HPD 

Simulated model 1           
obs(regime 1)a 345 352 340 363 352 338 362 - - - 
state accuracyb  0.939   0.944   -   

Simulated model 2           
obs(regime 1) 291 289 269 304 287 268 303 - - - 
state accuracy  0.918   0.915   -   

Simulated model 3           
obs(regime 1) 290 289 272 305 288 270 304 288 270 303 
state accuracy  0.918   0.920   0.920   

a. Returns the number of times the first regime is observed in the simulated regime vector. 
b. Returns the accuracy of the regime estimates as a percentage. The regime estimate is taken as the mode of  
the average regime probabilities constructed using the MCMC output.   

 

In terms of the first model, the true values are confined to the space determined by the 

95% HPD levels for 96 of the 99 model parameters in the case of ( )1 , , ,vh F R S R ⋅ ,  and 

95 of the 99 parameters given ( )2 , , ,vh F R S R ⋅  (refer to Table 2 for the first model’s 

common component convergence statistics). The estimates fail to identify any substantive 

differences between the approximating conditional densities and it is clear that both 

methods provide accurate results. The model is also estimated a second time using a 

                                                 
7 Estimates for the remaining parameters are available upon request. 
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dispersed set of initial values.8 Both sets of starting conditions yield almost identical 

results. 

Table 2 Descriptive statistics for the common component parameters using 
approximate estimators (simulated model 1) 

 
  ( )

1
, , ,

v
h F R S R ⋅  ( )

2
, , ,

v
h F R S R ⋅  

 Actual Median 95% HPD Median 95% HPD 

1,1γ  5.000 5.038 4.733 5.353 4.897 4.540 5.249 

2,1γ  2.000 2.116 1.911 2.335 2.043 1.822 2.268 

1,2γ  1.000 0.716 -0.219 1.668 0.699 -0.207 1.623 

2,2γ  7.000 7.903 6.626 9.019 7.629 6.342 8.758 

φ  0.000 -0.028 -0.060 0.002 -0.026 -0.057 0.007 
2

,1wσ  2.000 2.416 1.883 2.976 1.922 1.404 2.476 

2

,1wσ  6.000 6.135 3.322 10.020 5.251 2.698 8.701 

1,1P  0.900 0.942 0.908 0.971 0.940 0.904 0.970 

2,2P  0.600 0.665 0.503 0.808 0.659 0.497 0.805 

            a. 
,i j

γ  represents pervasive factor sensitivity to explanatory variable i in state j. 

                                                     b. 
,b a

P  is the probability of moving to state a from state b (equiv. to the ath row, bth  

                                                          column of the transition matrix, 
,a b

Pr ). 

 

The second model incorporates non-zero persistence in the common component. In 

contrast to the estimates produced for the first model, the estimates given by 

( )1 , , ,vh F R S R ⋅  clearly dominate those obtained using ( )2 , , ,vh F R S R ⋅ . In the former 

case, the 95% HPD levels encompass the true parameter values 98 of 99 times, as 

opposed to 78 of 99 times where ( )2 , , ,vh F R S R ⋅  is adopted (Table 3). Both methods 

accurately estimate the persistence imposed on the common factor. The greatest disparity 

across the methods is observed in the estimates of the factor sensitivities (or loadings) ic . 

In this respect, the use of the conditional expectation 2
t̂e  in place of 2

te , pursuant to 

( )2 , , ,vh F R S R ⋅ , appears to be associated with a negative bias in the resulting estimates. 

                                                 
8 The distance between the initial conditional log-likelihoods using the first estimation method 1h , 

2 1L L− ,  is approximately 27.  
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Accordingly, the derivation of 2
te   based on the existing common factor seems preferable 

to the method advocated by King, Sentana, and Wadhwani (1994) for the type of data 

process considered here. A second estimation, using dispersed initial values, produces 

results almost identical to the first set of estimates.9  

Table 3 Descriptive statistics for the common component parameters using 
approximate estimators (simulated model 2) 

 
  ( )

1
, , ,

v
h F R S R ⋅  ( )

2
, , ,

v
h F R S R ⋅  

 Actual Median 95% HPD Median 95% HPD 

1,1γ  5.000 5.189 4.905 5.464 5.614 5.249 5.994 

2,1γ  2.000 2.051 1.820 2.281 2.198 1.939 2.466 

1,2γ  1.000 0.768 0.132 1.427 0.845 0.189 1.565 

2,2γ  7.000 6.868 6.357 7.374 7.439 6.842 8.062 

φ  0.200 0.201 0.170 0.230 0.201 0.171 0.232 
2

,1wσ  2.000 2.331 1.835 2.919 2.473 1.839 3.154 

2

,1wσ  6.000 6.598 4.573 9.030 7.062 4.749 9.745 

1,1P  0.800 0.809 0.735 0.872 0.811 0.737 0.875 

2,2P  0.600 0.623 0.500 0.737 0.623 0.501 0.735 

 

The third model is estimated using both approximate forms and the exact conditional 

density (Table 4).  As per the second model, the posterior densities for four of the fifteen 

factor loadings are negatively skewed in the case ( )2 , , ,vh F R S R ⋅ . In contrast, the 95% 

HPD intervals encompass the true values for all factor loadings when using 

( )1 , , ,vh F R S R ⋅  and for fourteen of the fifteen loadings in the exact case ( ),h F R ⋅ . 

Although the 95% HPD estimates for the intercept terms a capture the true values in all 

cases for ( )2 , , ,vh F R S R ⋅  and in all but a single case for ( )1 , , ,vh F R S R ⋅ , three of the 

fifteen parameters are negatively skewed when drawing from the exact conditional 

density for the common component. The median estimates for 2a  are significantly larger 

than the true value for all three common component conditional density forms. This 

                                                 
9 The distance between the initial conditional log-likelihoods using the first estimation method 1h , 

2 1L L−  , is approximately 47. 
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appears to be associated with the near violation of the stationarity assumption in the 

second variable’s conditional idiosyncratic volatility pursuant to which 0.993α βσ σ+ = .  

Table 4 Descriptive statistics for the common component parameters using 
approximate and exact estimators (simulated model 3) 

 
  ( )

1
, , ,

v
h F R S R ⋅  ( )

2
, , ,

v
h F R S R ⋅  ( ),h F R ⋅  

 Actual Median 95% HPD Median 95% HPD Median 95% HPD 

1,1γ  5.000 5.078 4.822 5.348 5.239 4.971 5.522 5.158 4.905 5.393 

2,1γ  2.000 2.055 1.822 2.288 2.096 1.850 2.340 2.078 1.853 2.317 

1,2γ  1.000 0.692 0.089 1.319 0.727 0.100 1.393 0.734 0.128 1.375 

2,2γ  7.000 6.813 6.344 7.296 7.009 6.512 7.504 6.933 6.487 7.412 

φ  0.200 0.197 0.167 0.228 0.198 0.166 0.228 0.195 0.164 0.226 
2

,1wσ  2.000 2.341 1.847 2.918 2.238 1.689 2.845 2.437 1.947 3.016 

2

,1wσ  6.000 5.914 4.079 8.194 6.189 4.156 8.702 6.070 4.192 8.328 

1,1P  0.800 0.821 0.753 0.882 0.818 0.748 0.879 0.821 0.751 0.880 

2,2P  0.600 0.585 0.447 0.713 0.582 0.442 0.711 0.592 0.459 0.725 

 
The posterior estimates for the remaining parameters are similar across the conditional 

density forms. As is the case for the previous two models, the estimates for the 

conditional volatility terms appear to be the least accurate. Notwithstanding, the 95% 

HPD levels for { }, ,ϖ α βσ σ σ  fail to encompass their true values for only one of 45 

parameters in the cases of ( )1 , , ,vh F R S R ⋅  and ( ),h F R ⋅  and three of 45 parameters for 

( )2 , , ,vh F R S R ⋅ . In total, the 95% highest posterior density estimates capture the true 

values in 97 of 99 cases for the form ( )1 , , ,vh F R S R ⋅ , 90 of 99 cases for ( )2 , , ,vh F R S R ⋅  

and 94 of the 99 parameters for the exact case ( ),h F R ⋅ . Interestingly, the approximate 

form ( )1 , , ,vh F R S R ⋅  appears to provide more accurate estimates of the posterior 

distribution of the parameter set than either the second approximation ( )2 , , ,vh F R S R ⋅  or 
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the exact scenario ( ),h F R ⋅ . The third model is also estimated using dispersed initial 

conditions for all three conditional densities with almost identical outcomes.10  

 
The exact sampler appears more sensitive to initial conditions and slower to converge 

than either of the samplers based on the common factor conditional density approximates. 

The slower convergence observed for the third model when using ( ),h F R ⋅  seems to 

stem from the necessity to draw F as T separate blocks rather than a single block as in the 

approximate cases. It would, therefore, appear prudent to commence the sampler using 

the approximate ( )1 , , ,vh F R S R ⋅  even where the exact full conditional ( ),h F R ⋅  is 

adopted. Pursuant to the simulation output, the real-data model is estimated using the 

approximate common factor conditional density ( )1 , , ,vh F R S R ⋅  and verified using a 

smaller run based on the exact full conditional density ( ),h F R ⋅ . 

6. Convergence of the sampler and assessment of the model 
 
Chain convergence  
 
To assess convergence, the Metropolis-in-Gibbs sampler is run twice, using dispersed 

initial conditions, to obtain two sets of draws of length 100,000 each. Convergence 

statistics for the parameters of interest are provided in Appendix B.11 The autocorrelation 

levels and standard errors presented in Appendix B are estimated using the second run, 

while the Gelman-Rubin R statistics (R statistics) are estimated using the output from 

both runs. The standard errors are constructed using overlapping and non-overlapping 

batch means (Song and Schmeiser, 1993, 1995). The non-overlapping batches are derived 

subject to the condition that first-order autocorrelation fails to differ from zero at the 5% 

significance level. Since both methods provided similar estimates, only the standard 

errors determined using the non-overlapping batch method are provided.  

 
                                                 
10 The distance between the initial conditional log-likelihoods using the first estimation method 1h , 

2 1L L− , is approximately 163. 
11 To preserve space, the convergence diagnostics in Appendix B are limited to the common component 
parameters. Convergence diagnostics for the remaining parameters are available upon request. 
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The autocorrelation statistics suggest that the idiosyncratic persistence, common 

persistence, regime-dependent intercept and global transition terms mix reasonably well 

with most autocorrelation tapering off by the tenth lag. The European transition 

parameters, regime-dependent volatilities and factor loadings exhibit greater 

autocorrelation suggesting that the retrieval of approximately uncorrelated draws requires 

intervals of greater than ten lags. The mixing properties are poorest for the idiosyncratic 

factor GARCH terms with autocorrelation tapering off extremely slowly.  To investigate 

whether the convergence properties of the GARCH terms are a remnant of the drawing 

method, the parameters { }, ,
i

ϖ α β  are also drawn as a single block using a multivariate 

normal proposal density. The hyper-parameters for the proposal density are determined 

using an initial run of the sampler where draws for each element in the block { }, ,
i

ϖ α β  

are undertaken pursuant to both normal and t distributed random walk proposal densities 

(see Vrontos, Dellaportas, and Politis, 2000). The resulting convergence properties (and 

posterior densities) for the GARCH parameters remain similar to those observed using 

the drawing method proposed in Section 4.  

 
The R statistics approach their limiting value (unity) for all parameters estimated. The 

largest R statistic is 1.06 and corresponds to the contemporaneous French loading on the 

global factor. The R statistics suggest that both runs produce draws from the same 

posterior distribution. The standard errors suggest that a run of 100,000 draws produces 

estimates of the expected parameter values with typical order of precision 1/1000. The 

largest standard error is 0.59 for the third volatility regime associated with global 

innovations and represents approximately 0.6% of the expected value of the relevant 

parameter. 

 
Residual ARCH effects  

 
A preliminary model coupling common regime-dependent volatility (under the single-

global factor or joint global and European factor hypotheses) with constant idiosyncratic 

volatility fails to sufficiently explain the heteroscedasticity observed in the weekly 

returns for any of the markets considered. The presence of heteroscedasticity in the 

weekly returns data is, therefore, inadequately explained by the chosen common volatility 
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structure. It is clear that, at least in the case of returns observed on a weekly frequency, 

the idiosyncratic components exhibit heteroscedasticity that should be explicitly 

accounted for in a comprehensive model of the data.  

 
In the majority of cases, given the incorporation of common volatility shifts, a first-order 

GARCH process suffices in explaining the residual heteroscedasticity present in the 

returns data. Extensions to the first-order GARCH process, however, are necessary to 

satisfactorily accommodate the remaining heteroscedasticity in the Australian and 

Belgian markets. In this respect, the Engle Lagrange Multiplier test is applied to the 

standardised idiosyncratic residuals to examine for any remaining ARCH effects. The 

idiosyncratic residuals are standardised using the mean of the draws of GARCH 

conditional variances obtained pursuant to the Metropolis-in-Gibbs sampler used to 

estimate the model. The probability levels associated with the test statistics are presented 

in Table 5.  

Table 5 LM test for idiosyncratic residual ARCH effects: p-levels 
 

Market / Lag 1 2 3 4 5 6 
Austria 0.601 0.872 0.865 0.850 0.927 0.871 
Belgium 0.626 0.232 0.348 0.506 0.503 0.603 
Denmark 0.963 0.988 0.993 0.742 0.611 0.704 
France 0.873 0.431 0.615 0.609 0.672 0.785 
Germany 0.109 0.146 0.123 0.172 0.264 0.372 
Italy 0.333 0.592 0.249 0.098 0.167 0.252 
Netherlands 0.951 0.823 0.640 0.781 0.731 0.820 
Norway 0.880 0.826 0.932 0.972 0.992 0.978 
Spain 0.377 0.675 0.835 0.926 0.833 0.905 
Sweden 0.853 0.983 0.994 0.907 0.774 0.798 
Switzerland 0.252 0.433 0.606 0.758 0.860 0.908 
U.K. 0.830 0.889 0.802 0.708 0.758 0.843 
Canada 0.076 0.165 0.228 0.215 0.279 0.474 
U.S. 0.653 0.690 0.089 0.142 0.165 0.248 
Australia 0.501 0.755 0.905 0.417 0.525 0.639 
Hong Kong 0.095 0.243 0.414 0.467 0.615 0.582 
Japan 0.603 0.848 0.955 0.748 0.827 0.805 
Singapore 0.548 0.823 0.902 0.939 0.931 0.969 

  
The null hypothesis of no ARCH effects is not rejected at the 5% level for any market at 

any of the lags under consideration (the test statistic was obtained for the first twenty 
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lags; only the results for the first six lags are presented). Accordingly, one may conclude 

that no remaining ARCH effects are present in the idiosyncratic residuals. The absence of 

residual ARCH effects suggests that the volatility specifications are reasonable and 

suffice for the conditional homoscedasticity assumption underlying the regression 

estimates used by the sampler. The idiosyncratic residuals for all markets (save Australia 

and Belgium) are modelled as GARCH (P = 1, Q = 1) processes. The idiosyncratic 

residuals for Belgium are modelled using P = 2, Q = 1, while the Australian idiosyncratic 

residuals are modelled according to P = Q = 2. 

 
The properties of the extracted factors 

 
The ARCH test is also undertaken for the world and European factor residuals. The 

results are displayed in Table 6. In terms of the world factor, the null hypothesis is not 

rejected at the 5% level for any of the first twenty lags. It is, therefore, reasonable to 

conclude that, in the case of the world factor, volatility persistence and the associated 

heteroscedasticity is adequately accounted for by the three-regime Markov-switching 

volatility specification. The null hypothesis of no ARCH effects is rejected at the 5% 

level for one of the first twenty lags (lag eight) of the European factor. As such, it also 

appears reasonable to conclude that heteroscedasticity for the European composite is 

adequately accounted for by the two-regime Markov switching volatility specification.  

Table 6 LM test for common factor residual ARCH effects: p-levels 
 

Lag/Factor World Europe 
1 0.167 0.675 
2 0.294 0.437 
3 0.452 0.581 
4 0.581 0.445 
5 0.677 0.498 
6 0.770 0.412 
7 0.529 0.521 
8 0.602 0.047 
9 0.555 0.068 

10 0.625 0.075 
11 0.571 0.109 
12 0.645 0.140 
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The global factor for developed equity markets exhibits significant, positive first order 

dependence while the European factor observations do not appear to exhibit any 

persistence (refer to Appendix C for descriptive statistics on the common factor 

coefficients). Both the first and second global and European regimes are highly persistent 

suggesting that present day volatility is likely to continue into the future for low to 

medium volatility levels. As expected, the high global volatility regime is the least 

persistence of all six volatility regimes. The positive global and European intercept terms 

for the low volatility regime suggest that returns tend to be positive during periods of low 

volatility, steering towards the negative ranges as volatility levels rise. 

 
Figures 1 and 2 identify a number of important financial market events. The effects of 

rising U.S. unemployment (the U.S. unemployment rate reached 10.1% in 1982; the 

highest since 1940), and the subsequent surge in global markets following successive 

easing of U.S. interest rates is evident in 1982. The October, 1987 crash and the spike in 

oil prices following the 1990 U.S. invasion of Iraq are clearly observed. Higher levels of 

volatility associated with the 1997 Asian crisis and the continuing fear of a U.S. recession 

(leading to a 45-year U.S. interest rate of 1% in June, 2003) are also evident in the latter 

period of the study.  The equivalent results for the European factor are less clear 

suggesting that much of the volatility in developed equity markets is embedded in the 

global factor. An obvious fall in volatility, coupled with sustained European specific 

gains, is however evident in the period 1993-1998; probably emanating from lower 

European interest rates following early 1990 recessionary fears for the major European 

economies.  
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Figures 1a,b. Global and European time-varying intercept levels 
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Figures 2a,b. Time-varying volatility for the global and European factors 

7. Conclusion 
 
This paper presents a unified model allowing for return persistence and regime and time 

dependent co-movement levels. The model incorporates persistent common and 

idiosyncratic factors, coupled with Markovian common volatility regimes and GARCH 

idiosyncratic volatilities and may be used to jointly assess both persistence in asset 

returns and the time-varying impact of common regimes on asset co-movement levels. 

The incorporation of GARCH idiosyncratic volatilities in a persistent, Markovian regime-

dependent common factor framework renders maximum likelihood estimation an 

intractable problem. Instead, estimation is facilitated by construction of a Metropolis-in-

Gibbs sampler. The most time consuming element of the sampler pertains to the 

provision of draws from the conditional density of the common factors. In this respect, 

the single-block approach (see, Chib and Greenberg, 1996; Kim and Nelson, 1998) is not 

available and draws are obtained according to their time-dependent individual conditional 

densities. The common factor drawing procedure is effectively an exact derivation of the 

Kalman filter model with GARCH innovations (cf. the approximation in King, Sentana, 

and Wadhwani, 1994). 

 
To accelerate the procedure for drawing from the conditional density of the common 

component, two approximations to the conditional density of the common component are 

derived and examined. The approaches take the GARCH idiosyncratic volatilities as 

given by their conditional expectations or as a function of idiosyncratic volatilities 

determined by using the sampler history. The latter of the two approaches provides draws 
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from the posterior density of the parameter set that are not distinguishable from their 

counterparts determined using the exact conditional density of the common factors. 

 
The procedure is applied to developed equity markets to derive global, European and 

country-specific factors for 18 markets. There is little evidence of any residual 

heteroscedasticity in the country-specific or common factors suggesting that that 

volatility structure adequately accounts for the time-varying volatilities observed in 

equity prices. 
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Appendix A: Parameter estimation 
 
(1) Generating the loading matrix C 

Equation Section  1 
As it stands, the effective error term in the equation ( )t tr C L u= +tf  is both 

heteroscedastic and serially correlated as per: 

 
( ) , ,i i t i tL uψ ε= ,        (A.1) 

( )2
, ,~ 0,i t i tNε σ ,        (A.2) 

   
where the i subscript is a reference to the ith (i = 1 to N) market. 

 
Multiplying both sides of the equation ( )t tr C L u= +tf  by ( )Lψ  removes the 

autocorrelation in the error term. For ( ) 1i iL Lψ ψ= − , this implies: 

 
( ) ( ), , , ,1,1 , , ,2,2 , , ,...i t i t i i t i w t i w t i e t i e t i ty r Lr c L c Lψ ψ ψ ε= − = − + + − +f f f f .  (A.3) 

 
Conditional on 2

,i tσ , ,i tε  is independent such that 1
, ,i t i tε σ −

 = ( )1, ~ 0,1tz iidN . Given the 

diagonality of tG  and 2
,i tσ , the vectors { }, 1, 2,...,ic C i N⊂ ∀ ∈ , may be estimated 

equation by equation using a generalised least squares (GLS) approach. Bayesian GLS 

estimates are given by: 

 

( )2
,, , , , ~ ,p

i i i t i i ic a F R N a Aψ σ ,      (A.4) 

( ) 11
i iA A X X

−− ′= + ,        (A.5) 

( )1
i i i ia A A a X y− ′= + ,        (A.6)  

( ) ( ) ( ) ( )1 1 ,t i t i t i t i t i tX L W L E L W L Eψ ψ ψ ψ σ− −= ⎡ ⎤⎣ ⎦     (A.7) 

, ,t i t i ty y σ=          (A.8) 
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where { }1 1,..., , ,...,T TF W W E E=  and { },1 ,,...,i i i TR r r= .  The conditional volatilities ,i tσ  

are derived using the parameters pertaining to the current pass of the MCMC chain (see 

Section 5). The hyper parameters ,i ia A  are priors for the mean and covariance of ic  such 

that ( ) ( )~ ,i i ip c N Aα .12  

 
The draw ic  is accepted in accordance with the Metropolis-Hastings probability: 

 

( ) ( ) ( )
( ) ( )

* *

* *

, ( )
Pr min ,1 ,

, ( )

p p p
i i i ip

i i
i i i i

f r c p c p c
c c

f r c p c p c

⎡ ⎤⋅
⎢ ⎥=
⎢ ⎥⋅
⎣ ⎦

,     (A.9) 

where: 

 
( ) ( )

( )

*
, , , ,

2
, ,

, , , , , , ,

0, .

i i i t i i i i i i
t

i t i t
t

f r c f r F c a

N y B

α β ϖψ σ σ σ

σ
∀

∀

⋅ =

= −

∏

∏ i,tf
    (A.10) 

 
The prior density ( )ip c  is evaluated as ( ),i iN c Aα  while the proposal density ( )*

ip c  is 

given by ( ),i i iN c a A . If the draw is accepted, ic ′  forms the ith row of the N by 2K 

loading matrix C.  

 
(2) Generating the idiosyncratic persistence ψ  

 
The idiosyncratic persistence ψ  is drawn in a similar fashion to C. In this respect, 

conditional on R, F, C, G and the form for ( )Lψ , tu  is observed such that the proposed 

draw is straightforward.  

 
Conditional on F and ic , the idiosyncratic component for market i is: 

 
, , ,1,1 ,2,2...i t i t i iu r c c= − − −w,t e,t -1f f ,      (A.11)  

                                                 
12 The independent prior mean (variance) for each element of ic  is zero (ten). 
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From ( ) 1i iL Lψ ψ= − , and given the diagonality of tG , iψ  is dependent only on 

{ }2
, ,,i t i tu σ  such that a proposal density based on GLS estimation is naturally employed. 

Bayesian GLS estimates are given by: 

 
( )2

,, ~ ,p
i i i t i iu N a Aψ σ ,       (A.12) 

( ) 11
i iA A X X

−− ′= + ,        (A.13) 

( )1
i i i ia A A a X y− ′= + ,        (A.14) 

, 1 ,t i t i tX u σ−= ,         (A.15) 

, ,t i t i ty u σ= ,         (A.16) 

 
where ,i ia A  are priors for the mean and covariance of iψ  such that ( ) ( )~ ,i i ip N Aψ α .13 

Rejection sampling is used to ensure the stationarity of the ith idiosyncratic component 

iu  (i.e.: | | 1iψ < ) . The draw p
iψ  is accepted on a Metropolis-Hastings basis in the same 

manner as ic  (refer to equations (A.9)-(A.10) replacing ic , p
ic  with iψ , p

iψ ).  

 
(3) Generating the factor persistence Φ 

 
The common factors are modelled as: 

 

( ) ,

,

w t
t t

e t

v
L

v
μ

⎡ ⎤
Φ − = ⎢ ⎥

⎣ ⎦
f� � ,        (A.17) 

( ) ( )
( )
0

0
w

e

L
L

L
φ

φ
⎡ ⎤

Φ = ⎢ ⎥
⎣ ⎦

,       (A.18) 

( ),

,

~ 0, .w t t
t

e t t

v w
N H

v e
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

�        (A.19) 

 ( ) { } { } { }, , 0, , , 1, 2,...., , 1, 2,...,q t i sE v q w e i N s Tε = ∀ ∈ ∈ ∈ .   (A.20) 

                                                 
13 The independent prior mean (variance) for iψ  is zero (ten). 
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Given (A.20) and ( )2 2

, ,t w t e tH diag σ σ⎡ ⎤= ⎣ ⎦
� ,  the distribution of qφ  depends only on the 

qth factor: 

 
, , , ,1 , 1 ,2 , 2 ,3 , 3q t q t q t q q t q q t q q tv μ φ φ φ− − −= − − − −f f f f ,      (A.21) 

( )2
, ,~ 0,q t q tv N σ ,        (A.22) 

{ },q w e∈ .         

 
Conditional on the state system { }, ,,t w t e tS S S=  and the state-specific variances 

( ){ }2
, , 1, 2,...,q m m M qσ ∀ ∈ , GLS estimates may be used to obtain draws of qφ  as per: 

 
( )2, , ~ ,q q q q q qN a Aφ σ μf ,       (A.23) 

( ) 11
q qA A X X

−− ′= + ,        (A.24) 

( )1
q q q qa A A a X y− ′= + ,        (A.25) 

, 1 , 2 , 3 ,t q t q t q t q tX σ− − −⎡ ⎤= ⎣ ⎦f f f ,       (A.26) 

, ,t q t q ty σ= f ,         (A.27) 

 
where ,q qa A  are priors for the mean and covariance of qφ  such that 

( ) ( )~ ,q q qp N Aφ α .14 To ensure identification of the regime dependent variances, 

rejection sampling is employed such that the roots of ( )q Lφ  lie outside the unit circle. 

 
(4) Generating the factor intercept μ 

 
The intercept terms are defined as: 

 

( ) , ,

, ,

w t w t
t

e t e t

v
L

v
μ
μ
⎡ ⎤ ⎡ ⎤

Φ = +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

f� ,       (A.28) 

                                                 
14 The independent prior mean (variance) for each element in qφ  

is zero (ten). 
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{ }, ,  , ,q t q q tS q w eμ μ ′= ∀ ∈ ,       (A.29) 

 
The absence of any dependence between the world and European factors implies that the 

distribution of qμ  depends only on the qth factor: 

 
, , , , ,1 , 1 ,2 , 2 ,3 , 3q m t q t q m q q t q q t q q tv μ φ φ φ− − −= − − − −f f f f ,     (A.30) 

( )2
, , ,~ 0,q m t q mv N σ ,        (A.31) 

( ){ } { }1, 2,..., ,  ,m M q q w e∈ ∈ .      (A.32) 

 
Conditional on the qth set of states ,q tS , the draw qμ  may, therefore, be obtained from its 

full conditional density using: 

 
( )* 2, , ~ ,q q q q q qN a Aμ σ φf ,       (A.33) 

( ) 11
q qA A X X

−− ′= + ,        (A.34) 

( )1
q q q qa A A a X y− ′= + ,        (A.35) 

,2, ,3, ,1t q t q t q tX S S σ⎡ ⎤= ⎣ ⎦ ,        (A.36) 

, ,t q t q ty σ= f ,         (A.37) 

 

where * * *
,1 ,2 ,3q q q qμ μ μ μ ′⎡ ⎤= ⎣ ⎦  and ,q qa A  are priors for the mean and covariance of *

qμ  

such that ( ) ( )* ~ ,q q qp N Aμ α .15 The indicator variable , ,q m tS  is equal to unity in regime 

( )m q  and zero otherwise. Pursuant to the construction (A.36),  *
,2 ,1 ,2q q qμ μ μ= + and 

*
,3 ,1 ,3q q qμ μ μ= + . Note that in the case of eμ , ( ) 2M e =  such that the regression matrix 

tX  is replaced by  ,2, ,1t q t q tX S σ⎡ ⎤= ⎣ ⎦ . Given the identification restriction 

                                                 
15 The independent prior mean (variance) for each element of *

qμ  is zero (ten). 
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2 2
, 1 ,  q m q m mσ σ+ ∀� , the regime-dependent intercepts may be estimated without further 

restriction.  

 
(5) Generating the common variance Ht 

 
Given ( ), , 0,  , ,q t i sE v q i sε = ∀ , ( )2 2

, ,t w t e tH diag σ σ⎡ ⎤= ⎣ ⎦
�  and the restrictions on the state 

generating process, the distribution of 2
,q tσ  depends on , ,  q q qF S φ  and qμ : 

 
, , , ,1 , 1 ,2 , 2 ,3 , 3q t q t q t q q t q q t q q tv μ φ φ φ− − −= − − − −f f f f ,      (A.38) 

( )2
, ,~ 0,q t q tv N σ ,        (A.39) 

{ },q w e∈ .         (A.40) 

 
The variance 2 2 2 2

, ,1 ,1, ,2 ,2, ,3 ,3,q t q q t q q t q q tS S Sσ σ σ σ= + +  is modelled as (suppressing the q 

subscript in 2 2
, ,,q m q mσ σ� ) (see Kim and Nelson, 1998): 

 
( )( )( )2 2 2 2

1 2 ,2, 2 ,3, 3 ,3,1 1 1q t q t q tS S Sσ σ σ σ+ + +� � � ,     (A.41) 

 
where , ,q m tS  is an indicator variable taking on the value unity if ,q tS m=  and zero 

otherwise. Given the form adopted for 2
,q tσ , 2

mσ  is sampled conditional on 2
mσ≠  as 

follows: 

 
( )2 (1) (1)1 1

1 2 2~ ,gamma N Sσ − ,       (A.42) 

(1)
,1 ,2 ,3 ,q q qN S S S= + +        (A.43) 

(1) (1) (1) ,S v v′=          (A.44) 

( )( )( )(1) 2 2 2
, 2 ,2, 2 ,3, 3 ,3,/ 1 1 1t q t q t q t q tv v S S Sσ σ σ= + + +� � � ,    (A.45) 

( ) ( )12 (2) (2)1 1
2 2 21 ~ ,gamma N Sσ

−
+ � ,      (A.46) 

(2)
,2 ,3 ,q qN S S= +         (A.47) 
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(2) (2) (2)S v v′= ,         (A.48) 

( ) ( )(2) 2 2
,2, ,3, , 1 3 ,3,1t q t q t q t q tv S S v Sσ σ= + + � ,     (A.49) 

( ) ( )12 (3) (3)1 1
3 2 21 ~ ,gamma N Sσ

−
+ � ,      (A.50) 

(3)
,3qN S= ,         (A.51) 

(3) (3) (3)S v v′= ,         (A.52) 

( )( )(3) 2 2 2
,3, , 1 2 ,2, 2 ,3,1 1t q t q t q t q tv S v S Sσ σ σ= + +� � ,    (A.53) 

 
where , , ,q m q m t

t
S S

∀

=∑ . 

 
The qth state vector qS  is identified through the restrictions 

2 2 2 2 2
,3 ,2 ,1 ,3 ,20, 0q q q q qσ σ σ σ σ> > ⇔ > >� � . Note that in the case q e=  only the first two states 

are relevant. The process for obtaining the conditional draws, however, remains the same 

given the appropriate imposition ,3, 0e tS t= ∀ . 

 
(6) Generating the state (or regime) vectors , ,,w t e tS S   

 
Define , ,q m tJ  as the probability of the latent factor { },q w e∈  being in state (or regime) m 

at time t. State m is an element of the discrete set ( ){ }1, 2,...,m M q∈ . ,q tJ  is the M(q)-

vector of probabilities { }, ,q m tJ m∀ . qPr  is the time-invariant state transition matrix for 

common factor q. The process for drawing qS  is as follows: 

 
1. Obtain , | 1q t tJ − .  

2. Update , | 1q t tJ −  with the time-t information set to obtain , |q t tJ . 

3. Given { }{ }, | , 1, 2,...,q t tJ t t T∀ ∈ , update , |q t tJ  with information TI  to obtain , |q t TJ : 

3.0 Initialise the updating process at time t = T by using the random value  

c ~ U(0, 1) to draw ,q TS  from its discrete probability distribution , |q T TJ .  
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3.1 Set t = t-1 while t>1. 

3.2 Use , 1q tS +  to obtain the update , |q t TJ . 

3.3 Draw ,q tS  using , |q t TJ . 

3.4 Goto 3.1. 

 
Obtaining , | 1 , |,  q t t q t tJ J−  
 
Conditional on .q t q=Pr Pr  all time-t information pertinent to the time t+1 state estimate is 

already incorporated in , |q t tJ  and the one-step ahead estimate is given by, 

 
( ), 1| , 1 , |q t t q t t q q t tJ P S I J+ += = Pr .      (A.54) 

           
Upon realization of the time t+1 information set, the probabilities , 1|q t tJ +  may be updated 

using the state-contingent density ( ) ( )1 , 1 ,, ,t q t q m th q m h S I+ += f  (see Hamilton, 1989, 1990, 

for further information). 

 
The filtering process is initiated by setting the unconditional state probabilities 

determined through qPr  as ,0|0qJ .16 Given a third-order persistence process for qf , it is 

clear that , , 1q m tu +  is observed only for 3t ≥ . This problem may be overcome by treating 

( )1 ,th q m+  as a diffuse density ( ( )1 ,th q m+  = c for 0,1,2t =  pursuant to a professed 

ignorance about , , 1q m tu +  for 3t < ) such that , 1| 1 , |q t t q q t tJ J+ + =Pr  for 0,1, 2t =  and 

proceeding as normal for 3t ≥ .   

 
Obtaining , |q t TJ  and drawing ,q tS  
 
Conditional on , 1q tS j+ = , the incremental information set 1{ }, { }t

qS
I +≠ ≠ t

qf
 provides no further 

information regarding ,q tS  such that: 

                                                 
16 The unconditional state probabilities may be obtained using the characteristic decomposition of the 
transition matrix. In this respect, ,0|0qJ

 
is given by the appropriately scaled (to ensure the probabilities sum 

to unity) characteristic vector associated with the largest characteristic root (being equal to unity). 
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( ) ( ), , , 1,q t T q t q t tP S I P S S I+= ,       (A.55) 

  
where 1{ }, { }t

qS +≠ ≠ tf  refers to the states and qth factor values observed after times t+1 

and t respectively. 

 
Given , 1q tS j+ =  and , |q t tJ , the conditional on TI  draw of ,q tS  can be obtained using: 

 

( ) ( ) ( ), | , , | , | , ( ) , | ,, 1q t T q j q t t q t t q j M q q t t q jJ f J diag J diag J′ ′ ′= =Pr Pr Pr ,  (A.56) 

 
where ,q jPr  is the jth row of qPr , ( )1M q  is an M(q)-dimensional column vector of ones 

and ( )diag x  is a square matrix with the vector x on its diagonal. 

 
,q tS  is sampled by selecting from the ‘smoothed’ probability distribution , |q t TJ . The 

selection is made by reference to a draw from the continuous U(0,1) distribution. Given 

( )2
, ,~ 0,q m q mu N σ , the identification of the regime-switching volatility 2

,q mσ , 

( ){ }1, 2,...,m M q∀ ∈ , requires that each of the M states is observed for the qth common 

factor. Therefore an entire draw qS  is rejected if ( ){ }, , 1, 2,...,q tS m m M q∃ = ∀ ∈  for at 

least ( )dim x  time periods t. A corollary of the identification restriction on qS  is that the 

transition matrix qPr , conditional on ( ){ }, , 1, 2,...,q tS m m M q= ∀ ∈ , must not be closed 

with respect to a transition to any state m′ , m m′ ≠ . The aforementioned identification 

restriction on qPr  may be imposed by the truncation ( ), , 0,1q i j ∈Pr . 

 
(7) Generating the transition probability matrix Prq 

 
Conditional on the qth regime vector qS , the remaining conditional variables provide no 

further information such that: 
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( ) ( )
1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

, , , , 1

,1,1 ,1,2 ,1,3

,2,1 ,2,2 ,2,3

,3,1 ,3,2 ,3,3

,

 

,

t t t

t t t

t t t

q t T q t q t q t

d d d
q q q

d d d
q q q

d d d
q q q

g I g S S −=

=

Pr Pr

Pr Pr Pr

x Pr Pr Pr

x Pr Pr Pr

     (A.57) 

 
where ,i j

td  is equal to one if , , 1,q t q tS i S j−= =  and zero otherwise (see, for example, Kim 

and Nelson, 1998).  

 
Given time-invariant transition probabilities ,q t q=Pr Pr , the full conditional density 

( ) ( ), , , 1,q q q t q t q t
t

g S g S S −
∀

=∏Pr Pr  simplifies to: 

 
( ) ( )

1, 2, 3,

1, 2, 3,

1, 2, 3,

,1, ,2, ,3,

,1, ,2, ,3,

,1, ,2, ,3, ,

j j j
t t t

j j j

t t t

j j j

q T q q

d d d
q j q j q j

t j

d d d

q j q j q j
j

n n n
q j q j q j

j

g I g S

∀ ∀ ∀

∀ ∀

∀

∀

=

=

∑ ∑ ∑
=

=

∏∏

∏

∏

Pr Pr

Pr Pr Pr

Pr Pr Pr

Pr Pr Pr

    (A.58) 

 
where ,i jn , ( ){ }, 1, 2,...i j M q∈ , is the total number of transitions to state i from state j for 

state-vector q. Clearly, the conditional value attributed to ( ), , 0,1q i j ∈Pr , being the (i,j)th 

element of qPr , is determined by the weight of the ith element in the transition bin 

( ){ }: 1, 2,...,i jn i M q′ ′∈ . Given 
, 0 i jn i> ∀ , we obtain ( ), , 0,1q i j ∈Pr ,

 
, , 1q i j

i∀
=∑Pr . 

 
Given a uniform prior, a draw from the posterior density ( )q qg SPr  may be obtained 

using the Dirichlet distribution: 

 

 1, ( ),
, ~ j M q j

q j dirichlet n n⎛ ⎞′⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠
"Pr ,     (A.59) 
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 , ,1, , ( ),q j q j q M q j
′⎡ ⎤= ⎣ ⎦"Pr Pr Pr ,      (A.60) 

 
for ( )1, 2,...,j M q= . ,q jPr  is, therefore, the jth column of the transition probability 

matrix qPr . The Dirichlet density also addresses the a priori identification restriction 

( ), , 0,1q i j ∈Pr . 
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Appendix B: Common convergence statistics 
 

Variable Gelman-
Rubin R ACF(1) ACF(10) ACF(50) Std. Error Mean 

,1wφ  1.000 0.664 0.288 0.071 0.001 0.151 

,2wφ  1.000 0.246 0.004 -0.004 0.000 0.020 

,3wφ  1.000 0.229 0.008 0.003 0.000 0.014 

,1eφ  1.000 0.733 0.298 0.070 0.001 0.034 

,2eφ  1.000 0.282 0.001 0.004 0.000 0.051 

,3eφ  1.000 0.295 0.005 0.001 0.000 0.017 

,1wμ  1.000 0.397 0.008 0.001 0.000 0.189 

,2wμ  1.000 0.357 0.044 0.003 0.001 -0.237 

,3wμ  1.000 0.246 0.003 0.000 0.012 -2.232 

,1eμ  1.000 0.649 0.131 0.022 0.001 0.070 

,2eμ  1.000 0.545 0.137 0.009 0.003 -0.171 

2

,1wσ  1.000 0.845 0.281 0.044 0.002 1.423 

2

,2wσ  1.000 0.693 0.165 0.017 0.008 5.450 

2

,3wσ  1.000 0.060 0.004 0.006 1.014 96.176 

2

,1eσ  1.000 0.929 0.571 0.084 0.006 1.821 

2

,2eσ  1.001 0.824 0.411 0.056 0.025 7.440 

 
 

Transition 
parameters 

Gelman-
Rubin R ACF(1) ACF(10) ACF(50) Std. Error Mean 

World       

1,1 1.000 0.540 0.076 0.006 0.000 0.982 

1,2 1.000 0.645 0.106 0.007 0.000 0.014 

1,3 1.000 0.564 0.050 0.003 0.000 0.004 

2,1 1.000 0.631 0.105 0.004 0.000 0.034 
2,2 1.001 0.689 0.156 0.005 0.000 0.955 
2,3 1.001 0.835 0.301 0.007 0.000 0.011 

3,1 1.000 0.484 0.018 -0.007 0.001 0.196 

3,2 1.000 0.467 0.024 -0.008 0.001 0.437 

3,3 1.000 0.409 0.013 -0.008 0.001 0.368 

Europe       

1,1 1.001 0.895 0.573 0.092 0.000 0.964 

2,2 1.000 0.892 0.501 0.055 0.001 0.901 
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Appendix C: The common factor coefficients 
 

Variable Median Mean Std. 
deviation 95% BCI Pr>0 

,1wφ  0.151 0.151 0.047 0.060 0.243 1.000 

,2wφ  0.020 0.020 0.033 -0.044 0.084 0.732 

,3wφ  0.014 0.014 0.031 -0.047 0.075 0.671 

,1eφ  0.033 0.034 0.052 -0.068 0.137 0.739 

,2eφ  0.051 0.051 0.034 -0.016 0.119 0.932 

,3eφ  0.016 0.017 0.034 -0.051 0.084 0.685 

,1wμ  0.189 0.189 0.052 0.088 0.292 1.000 

,2wμ  -0.232 -0.237 0.146 -0.541 0.034 0.044 

,3wμ  -2.212 -2.232 2.503 -7.231 2.802 0.173 

,1eμ  0.068 0.070 0.074 -0.072 0.219 0.830 

,2eμ  -0.154 -0.171 0.232 -0.682 0.238 0.224 

   
2

,1wσ 17 1.419 1.423 - 1.139 1.699 - 

2

,2wσ  5.401 5.450 - 4.150 6.860 - 

2

,3wσ  59.391 96.176 - 10.864 265.182 - 

2

,1eσ  1.816 1.821 - 1.285 2.364 - 

2

,2eσ  7.192 7.440 - 4.921 10.522 - 

 
Transition Parameters Mean Std. deviation 95% BCI Pr>0 

World     
1,1 0.982 0.007 0.967 0.993 
1,2 0.014 0.007 0.003 0.029 
1,3 0.004 0.003 0.000 0.012 
2,1 0.034 0.015 0.011 0.069 
2,2 0.955 0.019 0.912 0.982 
2,3 0.011 0.013 0.000 0.044 
3,1 0.195 0.163 0.006 0.600 
3,2 0.437 0.198 0.079 0.821 
3,3 0.368 0.185 0.065 0.755 

Europe     
1,1 0.964 0.019 0.916 0.989 
2,2 0.900 0.052 0.767 0.967 

 

                                                 
17 The 95% intervals for the common variance coefficients are 95% HPDs (highest posterior densities) 
rather than 95% BCI levels.  
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