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Abstract 

This paper examines the welfare implications of managing asset-price with consumer-price 

inflation targeting by monetary authorities who have to learn the laws of motion for both 

inflation rates.  The central bank can reduce the volatility of consumption as well as improve 

welfare more effectively if it adopts state-contingent Taylor rules aimed at inflation and Q-

growth targets in this learning environment. However, under perfect model certainty, pure 

inflation targeting dominates combined consumer and asset-price inflation targeting. 

 

 



1 Introduction

Many countries now practice inflation targeting, but that has not immu-

nized economies from experiencing asset price volatility (for example, in the

form of exchange rate instability in Australia or share-market bubbles in the

United States). The practice of controlling changes in goods prices is taken

for granted by many Central Banks, but there is no consensus about the man-

agement of asset-price inflation, except in the sense that it is not desirable

for asset prices to be too high or too volatile. At the World Economic Forum

in Davos in 2003, Lawrence Summers suggested that policy makers should

use other tools, such as margin lending requirements or public jawboning, to

combat asset-price inflation. He compared raising interest rates to combat

asset-price inflation to a preemptive attack, and stated "it takes enormous

hubris to know when the right moment has come to start a war" [Summers

(2003), p.1].

Recent research shows that central bankers should not target asset prices

[see. for example. Bernanke and Gertler (1999, 2001) and Gilchrist and

Leahy (2002) for a closed economy study]. However, Cecchetti, Genberg and

Wadhwani (2002) have argued that central banks should "react to asset price

misalignments". In essence, they show that when disturbances are nominal,

reacting to close misalignment gaps significantly improves macroeconomic

performance. Smets (1997) has also stressed that the proper response of mon-

etary policy to asset-price inflation depends on the source of the asset-price

movements. If productivity changes are the driving force, accommodation is

called for, and real interest rates should remain unchanged. However, if the

source is due to non-fundamental shocks in the equity market, in the form

of bullish predictions about productivity, then monetary policy should raise

interest rates.

In contrast to previous studies we evaluate monetary policy in a small

open-economy framework, and in particular we are concerned with invest-

ment in a resource-rich small open economy subjected to the vagaries of

international terms of trade shocks. Detken and Smets (2004) have shown

that high cost asset-price booms are as common in small open economies

1



subject to fundamental terms-of-trade shocks as they are in relatively closed

economies driven by fundamental productivity shocks.

We also highlight learning on the part of the Central Bank. For a small

open economy subject to terms of trade movements, learning behavior on the

part of the policy authority is an appropriate assumption, since movements

of the terms of trade are determined in international markets far removed

from the influence of domestic policy actions. In this context, central banks

are more likely to be engaged in learning behavior.1

The economy we study has an export sector and an imported manufac-

tured goods sector. The terms of trade are driven by movements in the

commodity export price relative to the price of manufactured goods. The

volatility of this relative price in turn affects share prices and investment in

the booming (or declining) export sector.

In this paper, we consider the rate of growth of Tobin’s Q, first intro-

duced by Tobin (1969), as a potential target variable for monetary policy.

Our reasoning is that Q-growth would be small when the growth in the

market valuation of capital assets corresponds roughly with the growth of re-

placement costs. Since asset prices (in the market value) are a lot less sticky

than good prices (in the replacement cost), the presence of high Q-growth

would be indicative of misalignment of market value and replacement cost,

in other words an indication of an "excessive" change in the share price.

Thus monitoring and targeting Q-growth may be viewed as a proxy policy

for monitoring and targeting asset price inflation, but with the advantage

that the asset price is evaluated relative to a benchmark (the replacement

cost).

The focus on Q is also influenced by Brainard and Tobin (1977), who

argued that Q plays an important role in the transmission of monetary policy

both directly via the capital investment decision of enterprises and indirectly

via consumption decisions. Thus volatility of Q has implications for inflation

1See Bullard and Mitra (2002) for a study with private sector learning and see Evans
and Honkapohja (2003) for a study with central bank learning where the learning relates
to obtaining structural parameters needed in the policy rule. See also Honkapohja and
Mitra (2005) for a study where the central bank generates forecasts but that paper did
not explore the issue of asset-price targeting in an open economy.
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and growth. Large swings in Q can lead to systematic over-investment, and

in the open-economy context, over-borrowing and serious capital account

deficits.

This paper is concerned with the thought experiment: what happens to

consumption, inflation and welfare if the central bank also monitors Q? In

particular, we will generate the welfare implications of adopting a stance of

monetary policy which includes targeting consumer price inflation as well as

changes in Q. We assume that the policy makers have to learn about the

nature of the shock as well as the underlying laws of motion of Q-growth and

price inflation, subject to uncertainty about the underlying model.

We first examine the performance of Taylor rules in a no-learning con-

text when the central bank knows the underlying true model. Two types

of Taylor rules are examined - optimal Taylor rules and rules with pre-set

Taylor coefficients. We show that, in a no learning environment, there is no

case for including asset-price inflation as a target for monetary policy - the

welfare differences are minor. In this case, since the underlying true inflation

process depends, in part, on asset-price inflation, there is no need to target

asset-price inflation as well as goods-price inflation.

We then present the implications for two monetary policy scenarios with

learning behavior. First, we consider standard Taylor rules for inflation tar-

geting with and without reacting to Q-growth and then we examine state-

contingent Taylor rules where monetary policy is more cautious. In this case,

policy makers react to price inflation or Q-growth only when their forecasts

cross critical thresholds; otherwise they refrain from taking action by raising

or lowering interest rates, except in a worst-case scenario. This approach is

similar to a "worst-case" robust control approach to monetary policy design,

put forward by Rustem, Wieland, and Žakovíc (2005). They show that un-

der uncertainty this approach leads to more moderate policy responses and

represents a form of "cautionary monetary policy" advocated by Brainard

(1967), who argued that the degree of policy activism should vary inversely

with the extent of uncertainty about policy effectiveness [Rustem, Wieland,

and Žakovíc (2005): p. 15].2 To anticipate the result, we show in this paper

2The policy framework is also in line with Gruen, Plumb, and Stone (2005) who advo-
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that learning is the key assumption for justifying asset-price inflation target-

ing but that the presence of forecast errors implies that the Q-growth target

should only be incorporated in a state-contingent Taylor rule.

The paper is organized as follows. The model is described in Section 2,

and the solution algorithm is presented in Section 3. Section 4 contains the

simulation results for the alternative policy frameworks with and without

learning. Concluding remarks are in Section 5.

2 Model Specification

The framework of analysis contains two modules - a module which describes

the behavior of the private sector and a module which describes the behavior

of the central bank.

2.1 Private Sector Behavior

The private sector is assumed to follow the standard optimizing behavior

characterized in dynamic stochastic general equilibrium models.

2.1.1 Consumption

The utility function for the private sector “representative agent” is given by

the following function:

U(Ct) =
C1−γ
t

1− γ
(1)

where C is the aggregate consumption index and γ is the coefficient of relative

risk aversion. Unless otherwise specified, upper case variables denote the

levels of the variables while lower case letters denote logarithms of the same

variables. The exception is the nominal interest rate denoted as i.

The representative agent as “household/firm” optimizes the following in-

cated a robust approach when information about the nature of the bubble is unavailable
to the policy authority.
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tertemporal welfare function, with an endogenous discount factor:

Wt = Et

" ∞X
i=0

ϑt+iU(Ct+i)

#
(2)

ϑt+1+i = [1 + Ct]
−β · ϑt+i; ϑt = 1 (3)

where Et is the expectations operator, conditional on information available

at time t, while β approximates the elasticity of the endogenous discount

factor ϑ with respect to the average consumption index, C. Endogenous

discounting is due to Uzawa (1968) and is needed for the model to produce

well-behaved dynamics with deterministic stationary equilibria.3

The specification used in this paper is due to Schmitt-Grohé and Uribe

(2003). In our model, an individual agent’s discount factor does not depend

on their own consumption; rather their discount factor depends on the aver-

age level of consumption. Schmitt-Grohé and Uribe (2003) argue that this

simplification reduces the equilibrium conditions by one Euler equation and

one state variable over the standard model with endogenous discounting; it

greatly facilitates the computation of the equilibrium dynamics, while deliv-

ering “virtually identical” predictions of key macroeconomic variables as the

standard endogenous-discounting model.4

The consumption index is a composite index of non-tradeable goods n

and tradeable goods f :

Ct =
³
Cf
t

´αf
(Cn

t )
1−αf (4)

where αf is the proportion of traded goods. Given the aggregate consump-

tion expenditure constraint,

PtCt = P f
t C

f
t + P n

t C
n
t (5)

3Endogenous discounting also allows the model to support equilibria in which credit
frictions may remain binding.

4Schmitt-Grohé and Uribe (2003) argue that if the reason for introducing endogenous
discounting is solely for introducing stationarity, “computational convenience” should be
the decisive factor for modifying the standard Uzawa-type model.
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and the definition of the real exchange rate,

Zt =
P f
t

P n
t

(6)

the following expressions give the demand for traded and non-traded goods

as functions of aggregate expenditure and the real exchange rate Z:

Cf
t =

µ
1− αf

αf

¶−1+αf
Z
−1+αf
t Ct (7)

Cn
t =

µ
1− αf

αf

¶αf

Z
αf
t Ct (8)

Similarly, we can express the consumption of traded goods as a composite

index of the consumption of export goods, Cx, and import goods Cm:

Cf
t = (C

x
t )

αx
t (Cm

t )
1−αx (9)

where αx is the proportion of export goods. The aggregate expenditure

constraint for tradeable goods is given by the following expression:

P f
t C

f
t = Pm

t Cm
t + P x

t C
x
t (10)

where P x and Pm are the prices of export and import type goods respectively.

Defining the terms of trade index J as:

J =
P x

Pm
(11)

yields the demand for export and import goods as functions of the aggregate

consumption of traded goods as well as the terms of trade index:

Cx
t =

µ
1− αx

αx

¶−1+αx
J−1+αxt Cf

t (12)

Cm
t =

µ
1− αx

αx

¶αx

Jαx
t Cf

t (13)
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2.1.2 Production

Production of exports and imports is by the Cobb-Douglas technology:

Y x
t = Ax

t (K
x
t−1)

1−θx (14)

Y m
t = Am

t (K
m
t−1)

1−θm (15)

where Ax, Am represents the labour factor productivity terms5 in the produc-

tion of export and import goods, and (1− θx), (1− θm) are the coefficients

of the capital Kx and Km respectively. The time subscripts (t− 1) indicate
that they are the beginning-of-period values. The production of non-traded

goods, which is usually in services, is given by the labour productivity term,

An
t :

Y n
t = An

t (16)

Capital in each sector has the respective depreciation rates, δx and δm,

and evolves according to the following identities:

Kx
t = (1− δx)K

x
t−1 + Ixt (17)

Km
t = (1− δm)K

m
t−1 + Imt (18)

where Ixt and Imt represent investment in each sector.

2.1.3 Budget Constraint

The budget constraint faced by the household/firm representative agent is:

PtCt = Πt + St
£
L∗t − L∗t−1(1 + i∗t−1)

¤
− [Bt −Bt−1(1 + it−1)]− Taxt (19)

where S is the exchange rate (defined as domestic currency per foreign),

L∗t is foreign debt in foreign currency, and Bt is domestic debt in domestic

currency and Taxt is a lump sum tax. The profit, Π, is defined by the

5Since the representative agent determines both consumption and production decisions,
we have simplified the analysis by abstracting from issues about labour-leisure choice and
wage determination.
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following expression:

Πt = P x
t

∙
Ax
t

¡
Kx

t−1
¢1−θx − φx

2Kx
t−1
(Ixt )

2 − Ixt

¸
+Pm

t

∙
Am
t (K

m
t−1)

1−θm − φm
2Km

t−1
(Imt )

2 − Imt

¸
+ Pn

t A
n
t (20)

The aggregate resource constraint shows that the firm faces quadratic ad-

justment costs when they accumulate capital, with these costs given by the

terms φx
2Kx

t−1
(Ixt )

2 and φm
2Km

t−1
(Imt )

2 .

The household/firm may lend to the domestic government and accumu-

late bonds B which pay the nominal interest rate i. They can also borrow

internationally and accumulate international debt L∗ at the fixed rate i∗, but

this would also include a cost of currency exchange.6

The bond holdings and foreign debt holdings evolve as follows:

Bt+1 = Bt(1 + it)− Taxt + P n
t Gt (21)

StL
∗
t+1 = StL

∗
t (1 + i∗t ) + (P

m
t Mt − P x

t Xt) (22)

where G is government expenditure (exogenously determined).7

2.1.4 Euler Equations

The household/firm optimizes the expected value of the utility of consump-

tion (2) subject to the budget constraint defined in (19) and (20) and the

constraints in (17) and (18).

The variable Λ is the familiar Lagrangian multiplier representing the mar-

ginal utility of wealth. The terms Qx andQm, known as Tobin’s Q, represent

the Lagrange multipliers for the evolution of capital in each sector - they are

the “shadow prices” for new capital.

6The time-varying risk premium is assumed to be zero.
7In the simulations, G is set at zero. Thus the private sector holds government bonds

and is taxed in a lump sum fashion to service the debt. The presence of a domestic debt
instrument is a necessary device to facilitate the conduct of monetary policy operating on
the domestic interest rate.
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Max : Ł = Et

∞X
i=0

ϑt+i{U(Ct+i)

−Λt+i[Ct+i −
P x
t+i

Pt+i

µ
Ax
t+i(K

x
t−1+i)

1−θx − φx
2Kx

t−1+i

¡
Ixt+i

¢2 − Ixt+i

¶
−P

m
t+i

Pt+i

µ
Am
t+i(K

m
t−1+i)

1−θm − φm
2Km

t−1+i

¡
Imt+i

¢2 − Imt+i

¶
− P n

t+i

Pt+i
An
t+i

−St+i
Pt+i

¡
L∗t+i − L∗t−1+i(1 + i∗t−1+i

¢
) +

1

Pt+i
(Bt+i −Bt−1+i(1 + it−1+i)) + Taxt]

−Qx
t+i

£
Kx

t+i − Ixt+i − (1− δx)K
x
t−1+i

¤
−Qm

t+i

£
Km

t+i − Imt+i − (1− δm)K
m
t−1+i

¤
}

Maximizing the Lagrangian with respect toCt, L
∗
t , Bt, K

x
t ,K

m
t , I

x
t , I

m
t yields

the following first order conditions:

Λt = U 0(Ct) (23)

ϑtU
0(Ct)/Pt = Etϑt+1U

0(Ct+1)(1 + it)/Pt+1 (24)

ϑtU
0(Ct)St/Pt = Etϑt+1U

0(Ct+1)(1 + i∗t )St+1/Pt+1 (25)

£
ϑtQ

x
t −Etϑt+1Q

x
t+1(1− δx)

¤
= Etϑt+1Λt+1

P x
t+1

Pt+1

"
Ax
t+1(1− θx)(K

x
t )
−θx +

φx
¡
Ixt+1

¢2
2 (Kx

t )
2

#
(26)£

ϑtQ
m
t −Etϑt+1Q

m
t+1(1− δm)

¤
= Etϑt+1Λt+1

Pm
t+1

Pt+1

"
Am
t+1(1− θm)(K

m
t )

−θm +
φm
¡
Imt+1

¢2
2 (Km

t )
2

#
(27)

Ixt =
1

φx

µ
Qx
t

Λt
− 1
¶
Kx

t−1 (28)

Imt =
1

φm

µ
Qm

t

Λt
− 1
¶
Km

t−1 (29)
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The above equations (26) and (27) show that the solutions for Qx
t and

Qm
t , which determine investment and the evolution of capital in each sector,

come from forward-looking stochastic Euler equations. The shadow price or

replacement value of capital in each sector is equal to the discounted value

of next period’s marginal productivity, the adjustment costs due to the new

capital stock, and the expected replacement value net of depreciation.

The interest parity condition implied in the model can be derived from

combining equations (24) and (25):

Et [ϑt+1U
0(Ct+1)(1 + it)St/Pt+1] = Et [ϑt+1U

0(Ct+1)(1 + i∗t )St+1/Pt+1]

The standard interest parity relationship can then be derived by log-linearization

and by imposing the condition of statistical independence. Our non-linear

solution algorithm acknowledges the joint distribution of the endogenous vari-

ables in the determination of the exchange rate.

We also note that the solution for each sector’s Q also gives each sector’s

investment, I. Alternatively, if we know the optimal decision rule for

investment for each sector, we can obtain the value Q for each sector:

Qx
t = Λt

µ
φxI

x
t

Kx
t−1

+ 1

¶
Qm
t = Λt

µ
φmI

m
t

Km
t−1

+ 1

¶
In the steady state, of course, the investment/capital ratio is equal to the

rate of depreciation for each sector. Thus, the steady state value of Q for

each sector is given by the following expressions:

Q
x

t = Λ (φxδ
x + 1)

Q
m

t = Λ (φmδ
m + 1)

where Λ = U 0(C).

The solution of the model, discussed below, involves finding decision rules
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for Ct, St, Q
x
t , and Qm

t so that the Euler equation errors given in equations

(??) through (29) are minimized. Given that we wish to impose non-

negativity constraints on Ct, St, I
x
t ,I

m
t , we specify decision rules for these

variables and solve for the implied values of Qx
t , Q

m
t .

2.1.5 Exchange rate pass-through and stickiness

The price of export goods is determined exogenously for a small open econ-

omy (P x∗) and its price in domestic currency is P x = SP x∗. The price

of import goods is also determined exogenously for a small open economy

Pm∗, but, we assume that price changes are incompletely passed-through

(see Campa and Goldberg (2002) for a study on exchange rate pass-through

and import prices). Using the definition: Pm = SPm∗ and assuming partial

adjustment, we obtain:

pmt = ω(st + pm∗t ) + (1− ω)pmt−1 (30)

where ω = 1 indicates complete pass-through of foreign price changes.

For completeness, the index of foreign price P f
t and the index of aggregate

price Pt are:

P f
t = (1− αx)

αx−1 (αx)
−αx (P x

t )
αx (Pm

t )
1−αx (31)

Pt = (1− αf)
αf−1 (αf)

−αf
³
P f
t

´αf
(P n

t )
(1−αf) (32)

2.1.6 Macroeconomic Identities

The market clearing conditions are:µ
Y x
t −

φx
2Kx

t

(Ixt )
2

¶
= (Cx

t +Xt + Ixt )µ
Y m
t −

φm
2Km

t

(Imt )
2

¶
= (Cm

t −Mt + Imt ) (33)

Y n
t = Cn

t +Gt

11



Real gross domestic product is given as:

y =
1

Pt

∙
P x
t

µ
Y x
t −

φx
2Kx

t

(Ixt )
2

¶
+ Pm

t

µ
Y m
t −

φm
2Km

t

(Imt )
2

¶
+ Pn

t Y
n
t

¸
(34)

2.2 Terms of Trade

The only shocks explored in this paper comes from the terms of trade. Specif-

ically:

px∗t = 0.9px∗t−1 + 0.1p
x∗ + εx∗t ; εx∗t ∼ N(0, 0.01)

where lower case denotes the log of the world export price, px∗t and px∗ is

normalized to zero. The evolution of the price mimics actual data generating

processes, with a normally distributed innovation with standard deviation set

at 0.01. We assume that pm∗t is constant, with normalization pm∗ = 0, so that

the stochastic process describes a mean-reverting terms of trade process.

The simulations are also conducted assuming that the domestic price of

export goods fully reflect the exogenously determined prices:

pxt = st + px∗t (35)

however, the domestic price of import goods is partially passed on:

pmt = ω(st + pm∗t ) + (1− ω)pmt−1 (36)

where ω is the coefficient of exchange rate pass-through and pmt−1 is the start-

ing value for import goods which is set to pm∗. In this paper we shall only

present results for the case of low pass-through ω = 0.3 (see estimates cited

in Campa and Goldberg (2002)). This is a simulation study about the design

of monetary policy for an economy subjected to relative price shocks.

2.3 Monetary Authority

We are concerned with Taylor (1993, 1999) type rules, one with only annu-

alized price inflation targeting (π), for the desired interest rate, it, and one

with inflation and Q-growth targeting (π, η). However, they are evaluated

12



under four scenarios - standard Taylor rules (denoted by the functions N(π),

N(π, η)) and optimal Taylor rules (denoted by the functions O(π), O(π, η))

with no learning in both cases; and standard Taylor rules (denoted by T (bπ),
T (bπ,bη)),and state-contingent Taylor rules (denoted by S(bπ), S(bπ,bη)) with
central bank learning in both cases. In the no-learning context, the rules

are function of actual inflation and Q-growth, π, η, whereas in the learning

context, they are functions of the Central Bank forecasts of inflation and

Q-growth, bπ,bη.
2.3.1 Policies with No Central Bank Learning

• Standard Taylor Rules

For the pure inflation targeting regime, the desired interest rate has the

following form:

it = i∗ + φπ(πt − eπ), φπ > 1 (37)

with πt = ((Pt/Pt−4)− 1) representing an annualized rate of actual inflation,
and πt the actual inflation. The desired long run inflation rate is given by eπ.
The actual interest rate follows the following partial adjustment mechanism

to allow for smoothing behavior:

it = θit−1 + (1− θ)it (38)

The no-learning Taylor rule N(π) becomes:

N(π) : it = θit−1 + (1− θ) [i∗ + φπ(πt − eπ)] (39)

In the goods-price and asset-price inflation regime, we change the formu-

lation for the desired interest rate to include the Q-growth, ηt and a desired

target rate, eη :
it = i∗ + φπ(πt − eπ) + φη(ηt − eη), φπ > 1, φη > 0 (40)

with ηt = ((Q
x
t /Q

x
t−4) − 1) representing an annualized rate of Q-growth for

exportable goods and eη represents the target for this rate of growth. In this
13



case, the Taylor rule N(π, η) with smoothing becomes:

N(π, η) : it = θit−1 + (1− θ)
£
i∗ + φπ(πt − eπ) + φη(ηt − eη)¤ (41)

The Taylor coefficients are predetermined at θ = 0.9, φπ = 1.5 and φη = 0.5.

• Optimal Taylor Rules

As a check, on the robustness of the results, we also consider the case

where the Taylor coefficients are optimally determined. The rules O(π) and

O(π, η) in this case are:

O(π) : it = bθit−1 + (1− bθ) hi∗ + bφπ(πt − eπ)i (42)

O(π, η) : it = bθit−1 + (1− bθ) hi∗ + bφπ(πt − eπ) + bφη(ηt − eη)i (43)

where the b indicates that the coefficients are estimated. The estimated

optimal coefficients are:

O(π) : bθ = 0.2336; bφπ = 1.9999
O(π) : bθ = 0.000; bφπ = 1.5935, bφη = 0.5774

indicating that the main implication of the fixed coefficient cases is the im-

position of the smoothing coefficient.

2.3.2 Policies with Central Bank Learning

We now assume, perhaps more realistically, that the monetary authority does

not know the exact nature of the private sector model. Instead, it adopts

a VAR forecasting model of lag order k for forecasting the evolution of the

state variable, xt. The model takes the general form:

xt =
kX

j=0

Γ1t,jxt−j−1 + Γ2tit + et

Under the inflation-only policy scenario, the monetary authority estimates

or learns the evolution of inflation as a function of its own lag as well as the

14



interest rate. In this case xt = bπt. We use six lags and Γ1t,j is a recursively

updated matrix of coefficients, representing the effects of lagged inflation on

current inflation.

• Linear Taylor Rules

The two standard Taylor rules, under a learning environment becomes:

T (bπ) : it = θit−1 + (1− θ) [i∗ + φπ(bπt − eπ)] (44)

T (bπ,bη) : it = θit−1 + (1− θ)
£
i∗ + φπ(bπt − eπ) + φη(bηt − eη)¤ (45)

the main difference being that inflation and Q-growth are now forecasted.

• State-Contingent Taylor Rules

We also consider the case when the Taylor rule applied is dependent on the

conditions at time t and reflects the Central Bank’s concerns about inflation.

Under the inflation-only targeting case, the rules S(bπ) are described in Table
1.

Table 1: Policy Rules for Inflation Targeting Only: S(bπ)
|bπt| < 0.02 it = θit−1 + (1− θ)[i∗]

|bπt| = 0.02 it = θit−1 + (1− θ)[i∗ + φπ(bπt − eπ)]
In this pure anti-inflation scenario, if the absolute value of inflation is

below the target level π∗ then the government only engages in smoothing be-

havior. However, if inflation is above or below the target rate, the monetary

authority implements the Taylor rule.

In the inflation and Q-growth case, the state contingent Taylor policy

rules S(bπ,bη) are summarized in Table 2.
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Table 2: Policy Rules for Inflation and Q-Growth Targeting: S(bπ,bη)
Q-Growth

Inflation |bηt| < 0.02 |bηt| = 0.02
|bπt| < 0.02 it = θit−1 + (1− θ)[i∗] it = θit−1 + (1− θ)

£
i∗ + φη(bηt − eη)¤

|bπt| = 0.02 it = θit−1 + (1− θ) [i∗ + φπ(bπt − eπ)] it = θit−1 + (1− θ)

"
i∗ + φπ(bπt − eπ)
+ φη(bηt − eη)

#

In this setup the central banks shows a strong anti-inflation or anti-

deflation bias, in both the CPI and in the share price index. In other words,

the central bank worries a lot about absolute inflation being above targets,

either in the CPI, or in Q, or both. But it worries little about inflation or

deflation in either of these variables if the absolute value of the rate is below

targets. There are thus four sets of outcomes: (1) if both inflation and

asset-price growth are below the target levels, then the government follows a

"do no harm" cautionary approach with φπ = φη = 0; (2) if inflation is above

the target rate, and asset-price inflation is below the target, the monetary

authority puts strong weight on CPI inflation and sets φη = 0; (3) if only

asset-price growth is above its target, the central bank puts strong weight on

the asset-price growth target and sets φπ = 0; (4) if both asset-price growth

and inflation are above targets, it adopts a Taylor rule on both inflation and

Q-growth.

Note that monetary policy in all instances operates symmetrically. The

same weight applies to inflation or growth, with different signs, when they

are above or below their targets. For simplicity, with no long run inflation

nor trends in terms of trade, we set the targets for inflation and growth to

be zero; eπ = eη = 0.
Uncertainly about the underlying longer-term inflation in the CPI or asset

price is a rationale for our approach. Swanson (2006), for example, poses the

issue as a signal extraction problem for a policy-maker, with diffuse-middle

priors. In our framework, policymakers are uncertain about the underlying

rate of inflation or deflation in the range [-2, 2] percent, so they are unwill-

ing to react within this interval. As observed inflation or deflation moves
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further away from their prior values, they react once it hits the upper/lower

bounds. The main feature of this type of behaviour is "policy attentuation

for small surprises" followed by "increasingly aggressive responses" at the

margin [Swanson (2006): p.7].

3 Calibration and Solution Algorithm

In this section we discuss the calibration of parameters, initial conditions,

and stochastic processes for the exogenous variables of the model. We then

summarize the parameterized expectations algorithm (PEA) used for solving

the model.

3.1 Parameters and Initial Conditions

The parameter settings for the model appear in Table 3.

Table 3: Calibrated Parameters

Consumption γ = 3.0 , β = 0.009

αx = 0.5, αf = 0.5

Production θm = 0.7, θx = 0.3

δx = δm = 0.025

φx = φm = 0.03

Many of the parameter selections follow Mendoza (1995). The constant

relative risk aversion γ is set at 3.0 (to allow for high interest sensitivity).

The share of non-traded goods in overall consumption is set at 0.5, while

the share of exports and imports in traded goods consumption is 50 percent

each. Production in the export goods sector is more capital intensive than

in the import goods sector.

The initial values of the nominal exchange rate, the price of non-tradeables

and the price of importable and exportable goods are normalized at unity

while the initial values for the stock of capital and financial assets (domestic

and foreign debt) are selected so that they are compatible with the implied
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steady state value of consumption, C = 2.02, which is given by the interest

rate and the endogenous discount factor. The values of C
x
, C

m
, and C

n

were calculated on the basis of the preference parameters in the sub-utility

functions and the initial values of B and L∗ deduced. The steady-state level

of investment for each sector is equal to the depreciation rate multiplied by

the respective steady-state capital stock.

Similarly, the initial shadow price of capital for each sector is set at its

steady state value. The production function coefficients Am and Ax, along

with the initial values of capital for each sector, are chosen to ensure that

the marginal product of capital in each sector is equal to the real interest

plus depreciation, while the level of production meets demand in each sector.

Since the focus of the study is on the effects of terms of trade shocks, the

domestic productivity coefficients were fixed for all the simulations.

Finally, the foreign interest rate i∗ is also fixed at the annual rate of 0.04.

In the simulations, the effect of initialization is mitigated by discarding the

first 100 simulated values.

3.2 Solution Algorithm and Constraints

Following Marcet (1988, 1993), Den Haan and Marcet (1990, 1994), and

Duffy andMcNelis (2001), we parameterize nonlinear decision rules forCt,t St,

Ixt , I
x
t , given by ψ

S, ψC ,ψIx , and ψIf :

Ct = ψC(xt−1;ΩC) (46)

St = ψS(xt−1;ΩS) (47)

Ixt = ψIx(xt−1;ΩQx) (48)

Imt = ψIm(xt−1;ΩQm) (49)

The parameters of these decision rules are selected to minimize the squared

Euler-equation errors given in (??) to (29):
The symbol xt−1 represents a vector of observable state variables known

at time t: the terms of trade, the capital stock for exports and manufacturing

goods, the level of foreign debt and the interest rate, relative to their steady
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state values:

xt = ln

∙
P x∗
t

Pm∗
t

,
Kx

t−1

K
x ,

Km
t−1

K
m ,

L∗t−1

L
∗ ,
1 + it−1

1 + i

¸
(50)

The symbols Ωλ,ΩS,ΩQx, and ΩQm represent the parameters for the expecta-

tion function, while ψC , ψE, ψQx

and ψQf

are the expectation approximation

functions.8

Judd (1996) classifies this approach as a “projection” or a “weighted resid-

ual” method for solving functional equations, and notes that the approach

was originally developed by Williams and Wright (1982, 1984). The func-

tional forms for ψE, ψC, ψQx

, and ψQf

are usually second-order polynomial

expansions [see, for example, Den Haan and Marcet (1994)]. However, Duffy

and McNelis (2001) have shown that neural networks can produce results

with greater accuracy for the same number of parameters, or equal accuracy

with fewer parameters, than the second-order polynomial approximation.

We use a neural network specification with two neurons for each of the

decision variables. The neurons take on values between [0, 1] for a logsigmoid

function and between [-1, 1] for a tansigmoid function The functions were

then weighted by coefficients, and an exponent or anti-log function applied

to the final value. The functions were multiplied by the steady state values

to ensure steady state convergence.

The model was simulated for repeated parameter values for {ΩC , ΩS, ΩQx,

ΩQm} and convergence obtained when the expectation errors were minimized.
In the algorithm, the following non-negativity constraints for consumption

and the stocks of capital were imposed by the functional forms of the ap-

proximating functions:

Cx
t > 0, Kx

t > 0, Km
t > 0, Ixt > 0, Imt > 0, it > 0 (51)

The usual no-Ponzi game applies to the evolution of real government debt

and foreign assets, namely:

lim
t→∞

Bt exp
−it = 0, lim

t→∞
L∗t exp

−(i∗+∆st+1)t = 0 (52)

8In the case of no learning and optimal Taylor rules, the coefficients in the Taylor rules
are jointly estimated with the parameters of the expectation functions.
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Figure 1: One realization of the terms of trade shocks

We keep the foreign asset or foreign debt to GDP ratio bounded, and

thus fulfill the transversality condition, by imposing the following constraint

on the parameterized expectations algorithm:9

Xµ
|StL∗t | /Pt

yt

¶
< eL, Xµ

|Bt| /Pt

yt

¶
< eB (53)

where eL, and eB are the critical foreign and domestic debt ratios.

4 Simulation Analysis

4.1 Base-Line Results

The aim of the simulations is to compare the outcome for consumption,

inflation and welfare for the two policy scenarios - inflation targeting (π)

and inflation and Q-growth targeting (π and η). To ensure that the results

are robust, we conducted 1000 simulations (each containing a time-series

of 250 realizations of terms of trade shocks) for the case of relatively low

pass-through (ω = .3).

9In the PEA algorithm, the error function will be penalized if the foreign debt/gdp
ratio is violated. Thus, the coefficients for the optimal decision rules will yield debt/gdp
ratios which are well below levels at which the constaint becomes binding.
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Figure 1 shows the simulated paths for one time series realization of the

exogenous terms of trade index. Figure 2 pictures the paths of consumption

and inflation, with no-learning, where the solid lines are for the case of pure

inflation targets, while the dashed lines are for the case of inflation and

Q-growth targeting. Figure 3 shows the same variables under a learning

environment. The simulated values for other variables (not shown) are also

well-behaved.

In the learning scenarios, we note that, despite the large swings in the

terms of trade index, consumption is more stable with the inclusion of Q-

growth targeting under both Taylor frameworks. We also see that both

inflation and Q-growth do fall outside the bounds of [-0.02 0.02] for the

state-contingent framework. However, the violations of these bounds are

not persistent, neither in the case of pure CPI nor in the case of CPI and

asset-price inflation targets.

To ascertain which policy regime yields the higher welfare value, we exam-

ined the distribution of the welfare outcomes of the different policy regimes

for 1000 different realizations of the terms of trade shocks. Before presenting

these results, we present the accuracy checks of the simulation results as well

as the "rationality" of the learning mechanism.

4.2 Accuracy Test

The accuracy of the simulations may be checked by the Judd-Gaspar (1996)

statistic which is the maximum value of the absolute value of the Euler

equation error for consumption νt relative to Ct. That is, for realization j,

with size T , the accuracy measure is:

JG(j)
max = max

∙
| νt |
Ct

¸
where νt = ϑt+1Λt+1

1

Pt+1
(1 + it)− ϑtΛt

1

Pt

This statistic is a measure of the maximum error relative to a dollar spent

on consumption for each realization.

Table 4 presents the means and standard deviations of the Judd-Gaspar
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Figure 2: Time Series with Fixed and Optimal Taylor Coefficients with
No Learning: inflation targeting (solid line), inflation/Q-growth targeting
(dashed line)
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Figure 3: Time Series under Standard and State-Contingent Taylor Rules
with Learning: inflation targeting (solid line), inflation/Q-growth targeting
(dashed line)
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accuracy measures based on the maximum absolute error measures. We see

that the average size of the accuracy error measures are in the range 0.16 to

0.32 of one cent for every dollar spent on consumption.

Table 4: Judd-Gaspar Accuracy Statistic: Maximum Absolute Error

Mean and Standard Deviation (in parenthesis)

Taylor Rule with Fixed Coefficients and No Learning

Inflation Targeting: O(π) 0.0016 (0.0003)

Inflation/Q-Growth Targeting: O(π, η) 0.0023 (0.0004)

Taylor Rule with Optimal Coefficients and No Learning

Inflation Targeting: N(π) 0.0016 (0.0003)

Inflation/Q-Growth Targeting: N(π, η) 0.0018 (0.0003)

Taylor Rule Framework with Learning

Inflation Targeting: T (π) 0.0024 (0.0004)

Inflation/Q-Growth Targeting: T (π, η) 0.0016 (0.0004)

State Contingent Taylor Rule with Learning

Inflation Targeting: S(π) 0.0017 (0.0003)

Inflation/Q-Growth Targeting: S(π, η) 0.0032 (0.0006)

4.3 Learning and Quasi-Rationality

In our model, the central bank learns the underlying process for inflation in

the pure inflation-target regime and the underlying processes for inflation and

growth in the inflation-Q-growth targeting regime. Learning takes the form

of recursive updating of the least-squares estimates of a vector autoregressive

model.

Marcet and Nicolini (2003) raise the issue of reasonable rationality re-

quirements in their discussion of recurrent hyperinflation and learning be-

havior. In our model, a similar issue arises. Given that the only shocks in

the model are recurring terms of trade shocks, with no abrupt, unexpected
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structural changes taking place, the learning behavior of the central bank

should not depart, for too long, from the rational expectations paths. The

central bank, after a certain period of time, should develop forecasts which

converge to the true inflation and growth paths of the economy, unless we

wish to make some special assumption about monetary authority behavior.

Marcet and Nicolini discuss the concepts of “asymptotic rationality”,

“epsilon-delta rationality” and “internal consistency”, as criteria for “bound-

edly rational” solutions. They draw attention to the work of Bray and Savin

(1986). These authors examine whether the learning model rejects serially

uncorrelated prediction errors between the learning model and the rational

expectations solution, with the use of the Durbin-Watson statistic. Fol-

lowing Bray and Savin, we also use the Durbin-Watson statistic to examine

whether the learning behavior is “boundedly rational”.

Table 5 presents the Durbin-Watson statistics for the inflation and Q-

growth forecast errors of the central bank, under both policy regimes. In

both cases, the learning behavior is boundedly rational in the sense that

the Central bank does not make persistent forecast errors. Nevertheless, the

presence of forecast errors imply that Taylor rules under learning would be

different from Taylor rules without learning.

Table 5: Durbin-Watson Statistics for Forecast Errors

Percentage in Lower and Upper Critical Regions

Inflation Q-Growth

Standard Tayor Rule

Inflation Targeting: T (bπ) 0/0 –

Inflation/ Q-Growth Targeting: T (bπ,bη) 0/0 0/0

State-Contingent Taylor Rules

Inflation Targeting: S(bπ) 0/0 –

Inflation/ Q-Growth Targeting: S(bπ,bη) 0/0 0/0
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4.4 Comparative Results

This section summarizes the results for 1000 alternate realizations of the

terms-of-trade shocks (each realization contains 250 observations), for the

Taylor rule and the State-Contingent Taylor rules for conducting monetary

policy with central bank learning. Table 6 presents the mean and standard

deviation of the coefficients of variations of the 1000 samples for consumption,

inflation and Q-exports.

The simulation results across policy frameworks (with pre-set Taylor rule

coefficients) show a fall in the coefficient of variation for consumption, when

we change from an inflation only to an inflation/Q-growth regime. As for the

target variables, the coefficient of variations for inflation and Q-growth fell

under standard Taylor rules, but they increased under the state-contingent

scheme.

Table 6: Summary Statistics of the Coefficient of Variation

Mean (Standard Deviations in Parentheses)

T (bπ) T (bπ,bη)
Consumption 0.0119 (0.0016) 0.0098 (0.0022)

Inflation 0.0138 (0.0013) 0.0071 (0.0011)

Q-growth 0.0251 (0.0025) 0.0155 (0.0029)

S(bπ) S(bπ,bη)
Consumption 0.0199 (0.0033) 0.0150 (0.0021)

Inflation 0.0223 (0.0026) 0.0254 (0.0022)

Q-growth 0.0343 (0.0039) 0.0347 (0.0030)

4.5 Welfare Implications

Figure 4 shows the welfare differences for different comparisons of the 4 possi-

ble regimes, with learning, considered in the paper. These distributions show
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that S(bπ,bη) unambiguously generates better welfare outcomes compared to
S(bπ) and T (bπ,bη), and, on average for the majority of times, generates better
welfare outcomes than the simpliest framework T (bπ).
Following Schmitt-Grohe and Uribe (2004), we also computed the average

consumption compensation necessary for a household to be as well off in the

reference regime compared to the alternative. Using the relationship below

U((1− λ)Cr
t ) = U(Ca

t )

and the utility function and the welfare functions in (1) and (2) respectively

yields:

λ% =

"
1−

µ
W a

W r

¶ 1
(1−γ)

#
× 100

Positive values indicate what households can give up to be as well off in

the alternative regime compared to the reference regime. Negative values

indicate the consumption compensation necessary for households to be as

well off. As shown in Table 7, a household has to give up 0.1295% of

the consumption in a regime with standard Taylor rules and inflation-only

targeting T (bπ) to be as well off in a policy framework with standard Taylor
rules with inflation and Q-growth targeting T (bbπ,bη). In other words, T (bbπ,bη)
is, on average, welfare-reducing. In contrast, a household would need to

be compensated by 0.2409% of the consumption in a T (bπ) policy regime
to be as well off in a policy framework with state-contingent Taylor rules

with inflation targeting S(bπ). In other words, the state-contingent Taylor
rule S(bπ), on average, is welfare-improving, relative to the linear Taylor rule.
Overall, these results show that a household can be better off, in a learning

regime, with state-contingent Taylor rules. The best improvements come

from switching from a pure inflation targeting regime with either simple or

state-contingent Taylor rules (T (bπ) or S(bπ)) to the state-contingent Taylor
rule aimed at both inflation and Q-growth S(bπ,bη). The consumption gain
is 0.59 and 0.72 per cent respectively.

In contrast, in a no learning environment, changing from a pure Taylor

rule with inflation targets to an optimal rule with asset-price inflation targets
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Figure 4: Welfare Differences Under Rules with Learning

28



yields negligible welfare differences. The consumption compensation with

N(π) as the reference and N(π, η) as the alternative is only 0.0781%. In

other words, under perfect model certainty, including asset-price inflation

targets makes little or no difference to welfare - significant welfare differences

only emerge in the learning context and for state-contingent Taylor rules.

Table 7: Consumption Compensation (%)

Policy Frameworks

reference alternative

T (bπ) T (bπ,bη) 0.1295

T (bπ) S(bπ) -0.2409

T (bπ) S(bπ,bη) -0.5900

T (bπ,bη) S(bπ) -0.3714

T (bπ,bη) S(bπ,bη) -0.3477

S(bπ) S(bπ,bη) -0.7203

5 Concluding Remarks

This paper examined the effect of incorporating the rate of growth of To-

bin’s Q as an additional target to inflation for monetary policy in a learning

environment. Our simulation results show that, in a learning environment,

adding Q-growth in a linear Taylor case is welfare-reducing, but adding Q-

growth in the state contingent case is welfare-improving. The intuition is

that there are errors associated with forecasts, and the addition of an extra

target compounds the forecast errors (especially since, inflation and Q-growth

are positively correlated). In the linear Taylor rule case, the interest rate is

reacting continuously to information (measured with errors) whereas in the

state-contingent case, the interest rate is only reacting to information about

inflation and Q-growth when they are outside the upper and lower bounds.

In the learning environment with state-contingent Taylor rule, adding in-

formation about asset-price inflation helps because it improves the central

bank’s ability to forecast inflation. When the central bank does not know
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the true model, including asset-price growth brings into the policy process

forward-looking information which then improves the effectiveness of mone-

tary policy. Under no learning, or perfect model certainty, the introduction

of a Q-growth target in addition to CPI inflation is, on average welfare-

reducing, albeit negligible.

In this paper, we have assumed that the driving force for Q growth comes

from fundamentals, both in the underlying model and in the learning process.

Given that the Central bank has to learn the laws of motion of Q-growth as

well as inflation, and set policy on the basis of longer-term laws of motion

of these variables, it seems reasonable to start with Q driven solely by fun-

damentals. We leave to further research an examination of the robustness

of our results to the incorporation of bubbles and other non-fundamental

asset-price shocks.10

Finally, we note that our time-varying state-contingent interest-rate rules,

coming from uncertainty about the true laws of motion of consumer and

asset-price inflation dynamics, generated by a nonlinear stochastic model, is

a step away from the design of a nonlinear interest-rate rule, in which the

laws of motion are approximated by nonlinear approximation methods. It

may be that nonlinear policy rules may show even more beneficial effects

from a cautionary monetary policy aimed at asset price as well as consumer

price inflation.

10See Dupor (2005) for a closed economy study of whether monetary policy should
respond to asset price fluctuations which are not driven by fundamentals.
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