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Abstract 
 

    In this paper, we consider the introduction of Markov-switching (MS) processes to 

both the permanent and transitory components of the Beveridge-Nelson (BN) 

decomposition. This new class of MS models within the context of BN decomposition 

provides an alternative framework in the study of business cycle asymmetry. Our 

approach incorporates Markov switching into a BN decomposition formulated in a single 

source of error state-space form, allowing regime switches in the long-run multiplier as 

well as in the short-run parameters. 
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1 Introduction

Modeling the behavior of aggregate output has always been an important

goal for macroeconomists, who frequently want to study the characteristics

of trends and cycles in the economy. Researchers have often used unob-

served component (UC) models in this endeavour, specifying a permanent

component to represent trend and a transitory component to represent the

cycle. These UC models have often been augmented with Markov switching

(MS) processes, so as to incorporate asymmetries associated with business

cycles or other types of macroeconomic nonlinearities. See Kim and Nelson

(1999), Luginbuhl and De Vos (1999), Kim and Murray (2002) and Kim et

al. (2005) for examples. In this paper, we consider an alternative class of

MS models for capturing the nonlinear feature of business cycle asymmetry

based on the framework of the Beveridge-Nelson decomposition.

UC models are popular because they allow the direct speci�cation of the

permanent and transitory components in state-space form, and they can

be estimated quite easily, using maximum likelihood and the Kalman �lter.

The permanent and transitory components are usually assumed to be driven

by independent innovations, but recent work has relaxed this assumption,

and allowed these innovations to be correlated. The Beveridge-Nelson (BN)

decomposition is a very special case of UC modelling in which the inno-

vations for permanent and transitory components are perfectly correlated.

This is a more realistic assumption in the case of real US GDP than the

UC decomposition given that the innovations of the �trend�and �cycle�have

a correlation of -0.9 (see Morley Nelson and Zivot (2003)). BN decompo-

sition has been popular in the applied macroeconomic literature ever since

Beveridge and Nelson �rst suggested it in 1982, but an estimation di¢ culty

associated with approximating an in�nite forecasting horizon has sometimes

reduced its appeal.

Recent work by Anderson et al (2006) has simpli�ed the computation of

the BN components by working with a single source of error (SSOE) state-

space approach. Here, we extend BN decomposition in a way that accounts

for business cycle asymmetries by introducing a new class of MS model

that is built around a SSOE speci�cation. This model (henceforth called an
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MS-BN model) incorporates an MS process into both permanent and transi-

tory components, thus enabling both short run and long run parameters to

switch between regimes. The SSOE framework ensures that the embedded

permanent and transitory components turn out to be BN components.

MS-BN models have only a few precedents in the literature. Shami and

Forbes (2000) use a SSOE state-space approach to estimate a model in which

the drift follows a MS process, but they do not interpret their resulting trend

and cycle as BN components. More recently, Chen and Tsay (2006) have

investigated business cycle asymmetry within a BN decomposition by in-

corporating a two-state MS process into their permanent component. Like

Shami and Forbes (2000), their transitory component is not regime depen-

dent. Further, Chen and Tsay�s (2006) estimation technique di¤ers, in that

they use the Newbold (1990) procedure in conjunction with the Hamilton

(1989) �lter.

MS models depend on using hidden Markov chains as latent processes for

transiting from one regime to another, and Hamilton�s (1989) �lter provides

a maximum likelihood based algorithm for estimating the probabilities as-

sociated with being in each MS regime at each time. Snyder (1985) provides

an algorithm that ensures that the innovations of the unobserved state com-

ponents in a linear setting are perfectly correlated. We estimate our MS-BN

models using a maximum likelihood approach, but we replace the standard

Kalman �lter used in Kim�s (1994) approximation procedure for estimating

MS state-space models, with Snyder�s (1985) perfectly correlated version.

In the next section we introduce a general SSOE state-space model with

Markov switching, and discuss some details associated with estimating these

models. This section also outlines the special case of a two-state MS-BN

ARIMA(2; 1; 2) speci�cation, that is potentially useful for studying trends

and cycles in macroeconomic time series. We report on the application of

this model to study quarterly real GNP in the USA in Section 3, and then

provide a brief conclusion in Section 4.
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2 SSOE state-space models withMarkov-switching

(MS)

2.1 Model speci�cation

The single source of error state-space model for an observable variable

yt is

yt = �
0xt�1 + et (1a)

with

xt = Fxt�1 + �et; (1b)

where (1a) and (1b) respectively specify measurement and state transition

equations. The k vector xt contains the unobserved components at the

beginning of period t; � is a �xed k vector of parameters, et is an i.i.d.

N
�
0; �2

�
innovation, � is a �xed k vector, and F is a �xed k� k transition

matrix. Often � and F depend on time invariant parameters. The distin-

guishing feature of this speci�cation is that both equations are driven by

the same innovation, and Snyder (1985) adapts the Kalman �lter associated

with the maximum likelihood estimation of the parameters in (1a) and (1b)

to explicitly account for this feature.

Anderson et al (2006) point out that when�yt has an ARMA representa-

tion, then the perfect correlation between the errors in (1a) and (1b) can be

exploited to perform a BN decomposition of the variable yt into its BN trend

� t and cycle ct: This is done by including � t and ct in xt; and appropriately

specifying the matrix F: It turns out that � conveniently measures the long

run multiplier (i.e. the Campbell-Mankiw (1987) measure of persistence) in

this setting.

The addition of an MS process to a SSOE state-space model leads to

measurement and state transition equations given by

yt = �
0
Stxt�1 + et;St (2a)

and

xt = FStxt�1 + �Stet;St ; (2b)
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in which St is an unobserved MS variable that a¤ects both parameters and

innovations. For an M -regime �rst order Markov process, St can take just

one ofM discrete values at time t,and transition between regimes is governed

by 0BBBBB@
p11 p12 ::: p1M

p21 p22 ::: p2M
...

...
. . .

...

pM1 pM2 ::: pMM

1CCCCCA ; (2c)

where pij = Pr(St = jjSt�1 = i) and
MP
j=1

pij = 1 for all i: See Goldfeld and

Quandt (1973) and Hamilton (1989) for more details on Markov switching.

The k vector xt in (2a) and (2b) contains the unobserved component vari-

ables as before, and the single innovation et;St now follows a distribution

speci�ed by et;St � N
�
0; �2St

�
, in which the variance changes with regime.

The parameters in �St ; �St and FSt are random variables that depend on

the unobserved MS state variable St: Like the standard SSOE speci�cation

in (1a) and (1b), the MS-SSOE speci�cation can be used to perform a BN

decomposition, and this potential use leads to our classi�cation of the model

speci�ed by (2a) to (2c) as an MS-BN model.

2.2 Estimation

The estimation of (2a) to (2c) is similar to the estimation of (1a) and

(1b) in that both involve the calculation of forecasts xtjt�1 of the unobserved

components xt; conditional on information available at time t� 1: However,
the estimation of (1a) and (1b) just involves the calculation of xtjt�1 =

E(xtjeyt�1) with eyt�1 = (yt�1; yt�2; :::; y1), whereas the estimation of (2a)

to (2c) involves the calculation of M2 forecasts (one for each combination

of i and j) of x(i;j)tjt�1 = E(xtjeyt�1; St = j; St�1 = i) for each t, which is

considerably more complicated.

Kim (1994) outlines an algorithm that is useful for estimating a Markov

switching speci�cation that di¤ers from (2a) and (2b) in that his error terms

are independent (rather than perfectly correlated). His algorithm involves

calculating M2 forecasts x(i;j)tjt�1 at each time t; corresponding to every pos-
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sible combination of i and j; and then using the Kalman �lter to update

each x(i;j)tjt�1 to obtain x
(i;j)
tjt when yt becomes available. Kim�s algorithm also

updates P (i;j)tjt ; the mean squared error matrix of xt conditional on eyt:While
Kim�s algorithm is not directly applicable given that it assumes indepen-

dent innovations, we adapt it using Snyder�s (1985) �ltering algorithm for

perfectly correlated innovations to obtain

x
(i;j)
tjt�1 = Fjx

i
t�1jt�1;

P
(i;j)
tjt�1 = FjP

i
t�1jt�1F

0
j + �j�

2
j�
0
j ;

e
(i;j)
tjt�1 = yt � �

0
jx
i
t�1jt�1;

v
(i;j)
tjt�1 = �jP

i
t�1jt�1�

0
j + �

2
j ;

K
(i;j)
tjt�1 = (FjP

i
t�1jt�1�j + �j�

2
j )(v

(i;j)
tjt�1)

�1
;

x
(i;j)
tjt = x

(i;j)
tjt�1 +K

(i;j)
tjt�1e

(i;j)
tjt�1;

and

P
(i;j)
tjt = P

(i;j)
tjt�1 �K

(i;j)
tjt�1v

(i;j)
tjt�1K

(i;j)
tjt�1

0;

where v(i;j)tjt�1 is the conditional variance of the forecast error e
(i;j)
tjt�1; andK

(i;j)
tjt�1

is the Kalman gain based on information available up to time t � 1 with
St�1 = i and St = j.

We follow Kim (1994), and simplify the implementation of this algorithm

by collapsing theM2 terms for each of x(i;j)tjt and P (i;j)tjt intoM terms for each

speci�ed by

xjtjt =

PM
i=1 Pr(St = j; St�1 = ijeyt)x(i;j)tjt

Pr(St = jjeyt) (3a)

and

P jtjt =

PM
i=1 Pr(St = j; St�1 = ijeyt)(P (i;j)tjt + (xjtjt � x

(i;j)
tjt )(x

j
tjt � x

(i;j)
tjt ))

Pr(St = jjeyt) ;

(3b)

inferring the conditional probabilities in (3a) and (3b) from a modi�ed

version of the Hamilton (1989) �lter. As discussed in Kim (1994), the
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equations in (3a) and (3b) only approximate E(xt j (eyt; St = j)) and

E[(xt � x;jtjt) � (xt � x
;j
tjt)

0 j (eyt;St = j)]; because x(i;j)tjt and P (i;j)tjt derived

from the Kalman �lter only approximate E(xt j eyt;St = j; St�1 = i) and

E[(xt � x;jtjt) � (xt � x
;j
tjt)

0j(eyt; St = j; St�1 = i)]: Nevertheless, these ap-

proximations work well in practice, and have little in�uence on the �nal

estimates.

The �lter for the SSOE state-space model with MS is a combination

of Snyder�s (1985) and Hamilton�s (1989) �lter, along with Kim�s (1994)

approximations. Snyder�s version of the Kalman �lter is iterated M2 times

for each t to compute the posteriors x(i;j)tjt and P (i;j)tjt for all i and j; and then

x
(i;j)
tjt and P (i;j)tjt are each reduced to M values using equations (3a) and (3b)

and conditional probabilities derived from the Hamilton �lter.

The conditional density f(ytjSt = j; St�1 = i; yt�1) can be based on

prediction error decomposition with

f(ytjSt= j; St�1= i; eyt�1) = (2�)�N
2

���v(i;j)tjt�1

���� 1
2
exp (�1

2
(yt��

0
jx
i
t�1jt�1)

0v
(i;j)
tjt�1(yt��

0
jx
i
t�1jt�1));

where v(i;j)tjt�1 is the conditional measurement error variance obtained from

the Kalman �lter recursion. The log likelihood function is then given by

LL =
TX
t=1

ln(f(ytjeyt�1)) = TX
t=1

ln(
X
St

X
St�1

f(ytjSt; St�1; eyt�1) Pr(St; St�1jeyt�1));
where Pr(St; St�1jeyt�1) is the conditional joint density of the current and
previous states, which is obtained from recursion of the Hamilton �lter.

Maximization of this log likelihood leads to estimates of the underlying

parameters.

The forecast byt+1jt for period t+ 1 is given by
byt+1jt = MX

j=1

�
0
jx
j
tjt Pr(St+1 = jjeyt);

and this is the weighted average of the M reduced forecasts derived from

(3a).

It is not necessary to smooth the unobserved components x(j)tjt when
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innovations are perfectly correlated, as x(j)tjt is already equal to x
(j)
tjT (see

Harvey (1989) and Harvey and Koopman (2000)). However, there is still a

need to compute the smoothed Pr(St = jjeyT ) to obtain the weighted average
unobserved components xt=T at time t: Kim (1994) provides an appropriate

smoothing algorithm, with the resulting components being

xtjT =
MX
j=1

Pr(St = jjeyT )x(j)tjT .
We show below that when �yt has an MS-ARMA representation and

we de�ne the permanent and transitory components of yt to be � t and ct

respectively, then (2a) to (2c) can lead to the BN decomposition of yt: This

decomposition simply involves the inclusion of � t; and ct in the component

vector xt, and an appropriate speci�cation of �St ; FSt and �St:

2.3 SSOE models and the BN decomposition

Anderson et al. (2006) show that if yt is a I(1) variable with a Wold

representation given by �yt = �+
 (L) "t; where � is the drift, 
(L) =
�(L)
�(L)

is an ARMA(p; q) process with 
(0) = 1 and �1i=0 j
ij <1, and "t is an iid�
0; �2

�
innovation, then the BN permanent and transitory components are

respectively given by

� t = �+ � t�1 + 
 (1) "t (4a)

and

ct = �
�
p(L)ct + �

�
n(L)"t + (1� 
(1))"t; (4b)

where ��p(0) = ��n(0) = 0; and the orders of ��p(L) and �
�
n(L) are p and n

with n � max(p � 1, q � 1). The perfectly correlated innovations in (2.4a)
and (2.4b) �t in with the SSOE framework.

We incorporate an MS process in the permanent and transitory compo-

nents by specifying

� t = �St + � t�1 + �St"t (5a)

and

ct = �
�
p;St(L)ct + �

�
n;St(L)"t + (1� �St)"t; (5b)
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so that the random parameters �St ; �
�
p;St(L); �

�
n;St(L); and �St all depend

on St. As above, the innovation to yt is "t � iid(0; �2); and this provides

the single source of disturbance. We have restricted �2 to be constant in

this speci�cation, although in principle �2 could depend on St without loss

of identi�cation. As in (2.4), the perfectly correlated innovations in (2.5)

allow us to write the model in SSOE form.

To illustrate the SSOE state space form of an MS-BN model with busi-

ness cycle asymmetries we note that the incorporation of an MS process into

the ARIMA(2; 1; 2) SSOE model leads to a speci�cation with

yt = �St +
h
1 ��1;St ��2;St �1;St

i
2666664
� t�1

ct�1

ct�2

"t�1

3777775+ "t (6a)

as the measurement equation, and2666664
� t

ct

ct�1

"t

3777775 =
2666664
�St

0

0

0

3777775+
2666664
1 0 0 0

0 ��1;St ��2;St �1;St

0 1 0 0

0 0 0 0

3777775

2666664
� t�1

ct�1

ct�2

"t�1

3777775+
2666664

�St

1� �St
0

1

3777775 "t
(6b)

as the transition equation. The parameters �St ; �1;St ; �2;St ; �1;St and �St are

time invariant parameters that depend on the latent MS variable St; and one

can use the two-dimensional version of (2.2c) and allow this variable to take

on two possible values (i.e. St = 1 or St = 2), where the two states represent

�contractionary� and �expansionary� regimes in the business cycle. Note

that the MA(2) parameters in the underlying ARMA(2; 2) speci�cation for

�yt drop out during reparameterisation into SSOE form, being replaced by

the �St parameters.

3 Modelling US GNP

This section provides an empirical example of an MS-BN model of

the logarithms of real GNP, detailing the characteristics of this model and
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its implied BN components, and comparing these characteristics with the

corresponding linear BN model. An important motivation for this exercise

is to determine whether the incorporation of Markov-switching leads to an

improved ability to capture asymmetries in business cycles, although we

also look at out-of-sample forecast and other aspects of model performance.

We focus on the MS-BN ARIMA(2,1,2) model shown in equations (6a) and

(6b), because researchers often study permanent/transitory decompositions

of the linear version of this model.

Our study is based on quarterly seasonally adjusted data that measures

(the natural logarithm of) real GNP for the USA from 1947:1 to 2003:1. We

use the data for 1947:1 to 2000:1 for estimation, and with-hold the remain-

ing twelve observations for out-of-sample forecast analysis. We estimate the

linear BN model �rst, and retain the estimated coe¢ cients as starting values

for corresponding parameter estimates when estimating the MS-BN model.

Our estimation of the MS-BN model follows the procedure outlined in Sec-

tion 2, with the imposition of the condition that �St=2 = �St=1 + �2 with

�2 = 0 so as to identify St = 2 as the expansionary regime. In light of the
well known fact that the likelihood functions of MS models are plagued with

numerous local maxima, we experiment with perturbing our starting values

and then take parameter estimates corresponding to the highest converged

likelihood as our maximum likelihood estimates. Our experiments use start-

ing values of around 0.8 for p11 and 0.9 for p22; since these values are close

to corresponding estimates in other empirical studies.

3.1 The empirical model

Table 1 presents the maximum likelihood parameter estimates. Since

�1 is less than zero, it is appropriate to call St = 1 a "slow growth" regime

rather than a �recessionary" regime. The long-run multipliers measured by

�1 and �2 are greater than unity, implying that both regimes have strong

persistence as measured by Campbell and Mankiw (1987). This persistence

measure predicts the long run increase in output resulting from a 1% shock

in output in one quarter, and our estimates indicate that persistence for the

"fast growth" regime is stronger than that for the "slow growth" regime.
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The persistence measure for the linear model falls between those for the slow

and fast regimes. The tendency for the economy to stay in a fast growth

regime (p22) is about the same as that found in other empirical studies (i.e.

85%), while the tendency to remain in a slow growth regime is considerably

smaller.

The reported R2 statistics (suggested by Stock and Watson (1988)) mea-

sure the proportion of variance in output that can be attributed to variance

in the permanent component, and this ratio decline by about 15 percentage

points, once the model accounts for Markov-switching. This suggests that

the MS process plays an important role in output variation, a¤ecting the

transitory component more than the permanent component. However, the

latter still plays the dominant role when it comes to explaining changes in

output.

The top portions of Figure 1 illustrate the smoothed permanent and

transitory components. The transitory component �uctuates considerably,

especially when entering and exiting the "slow growth" regime, but the

dominant features are two structural changes in variance, with the �rst

occurring in about 1960, and the second occurring in about 1984. This

second volatility decline is well documented (see e.g. McConnell and Perez�

Quiros (2000)).

The lower portions of Figure 1 presents the smoothed and �ltered prob-

abilities of being in the "slow growth" regime, together with peak to trough

episodes de�ned by the NBER. The probabilities of being in the "slow

growth" regime for the US peak during all the recession periods dated by

NBER. Although the results are less convincing for the recessions in the

seventies, they are nevertheless higher than the unconditional probability of

0.28. The probability of being in the "slow growth" regime is only around

0.5 during the 1990-91 recession. This is higher than the unconditional prob-

ability of being in the "slow growth" regime, but this recession was not a

typical recession, being just attributed to adverse economic fundamentals,

as in�uence from the political uncertainty caused by the �rst Gulf War also

played a role.
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Figure 1: Permanent and Transitory Components, Filtered and
Smoothed Probability of Recession
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Note: The pair of lines on the graphs indicate peak to trough episodes (recessions)

recorded by NBER.
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3.2 Model diagnostics

The standard measures of �t reported at the bottom of Table 1 suggest

that the MS-BN model �ts the data much better than the BN models (see

Table 2), but this is hardly surprising, given the inherent �exibility of the

MS-BN speci�cation. The question of whether the MS-BN model can "�t"

in the sense of capturing features that are actually observed in the data is

more important, and we use the parametric encompassing tests suggested

by Breunig et al. (2003) to explore this issue. These tests are designed to

assess whether an estimated model can capture the mean, variance, and var-

ious measures of asymmetry in the data, and they can also provide indirect

information on whether the maximum likelihood estimates re�ect the true

global maximum.

Table 1: Estimates of MS-BN Model

MS-BN Model
Parameter Coe¤ Std Error

�1 1.1446 0.0000
�11 1.2778 0.0001
�21 -0.9912 0.0001
�1 0.4994 0.0002
�11 0.4226 0.0001
�2 1.3476 0.0001
�12 1.4352 0.0002
�22 -0.8183 0.0002
�2 0.9655 0.0000
�12 0.2526 0.0001
p11 0.6268 0.0000
p22 0.8524 0.0001

R2� 0.7127
SSE 153.30
AIC -0.2162

* The R2 statistic is obtained by regressing the quarterly change in GDP
against the change in the BN trend component.

Letting b� be the maximum likelihood estimates for the model, the para-

metric encompassing tests compare a sample moment b
 for the raw data
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Table 2: Estimates of BN Model

BN Model
Parameter Coe¤ Std Error

� 1.2379 0.1419
�1 1.3724 0.1334
�2 -0.7760 0.1644
� 0.8520 0.0834
� 0.3477 0.1154

R2� 0.8493
SSE 188.90
AIC -0.0731

* The R2 statistic is obtained by regressing the quarterly change in GDP
against the change in the BN trend component.

(eg a sample mean), with the corresponding moment 
(b�) for data that has
been generated from the estimated model. The test statistic is given by

R = (b
 � 
(b�))0[var(b
)� var(
(b�))]�1(b
 � 
(b�)):var(
(b�));
and it has a �2dim(
) distribution under the null hypothesis that the model is

consistent with the data. Since it is usually di¢ cult to calculate var(
(b�),
Breunig et al. (2003) suggest using var(b
) to approximate [var(b
)�var(
(b�))];
thereby making the test more conservative. When testing Markov-switching

models, Breunig et al (2003) suggest complementing encompassing tests

based on the mean and variance with tests based on

q1 = E[I(�yt�2 < 0;�yt > 0)]

and

q2 = E[I(�yt�2 > 0;�yt > 0)];

where I(A) is the indicator function, taking the value 1 if event A is true and

zero otherwise. These last two moments re�ect asymmetries documented in

Potter�s (1995) study of US real GNP, and encompassing tests based on the

corresponding sample moments can indicate whether the model has captured

these asymmetries.
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We assess our linear and MS-BN models by applying parametric encom-

passing tests for the mean, variance, q1 and q2: Our 
(b�) statistics are based
on 10,000 replicated samples of the same size as the original data, with start-

ing values �xed at the �rst observed data point. As in Breunig et al (2003),

we obtain robust estimators of var(b
) by running regressions of the sample

t on a constant, using a Newey-West correction that employs 9 lags. The

test results are presented in Table 3. These statistics show that although

both models can capture the asymmetric characteristics of the data very

well, the BN model is unable to capture the variance. The MS-BN model

has no trouble in this regard, suggesting that the use of Markov switching

improves the modelling of the variance of US GNP. We note, however, that

the MS-BN model has a little di¢ culty in capturing the mean, although this

problem is not statistically signi�cant at the 5% level of signi�cance.

Table 3: Parametric Encompassing Test Results for MS-BN and
BN Models

MS-BN Model
Model Data R-stat p-value�

Mean 824.18 819.07 3.3222 0.0684
Variance 2665.01 2668.41 0.0316 0.8588
q1 0.1048 0.1464 0.0761 0.7827
q2 0.7381 0.6523 0.1539 0.6949

BN Model
Model Data R-stat p-value�

Mean 821.18 819.07 0.5685 0.4509
Variance 2791.72 2668.41 41.5654 0.0000
q1 0.1463 0.1464 0.0000 0.9996
q2 0.6511 0.6523 0.0000 0.9957

�The test statistic is distributed as a �21
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3.3 Forecasting performance

We conclude our model analysis with a small out-of-sample forecasting

exercise. All forecasts are based on the models estimates derived from the

initial samples (i.e. we don�t undertake any further estimation), and the

forecasts begin with the �rst observation in the out-of-sample data. We

generate a sequence of 1 - 8 step ahead forecasts, roll the forecast origin

forward, generate another sequence of 1-8-step ahead forecasts, and repeat

this procedure until we have 12 x 1-step ahead forecasts down to 5 x 8-step

ahead forecasts for the twelve out-of-sample observations. The forecasts

are generated using the standard forecast simulation method with 10,000

replications for each "rolling" forecast. Multi-step ahead forecasts for the

MS-BN models are based on

E(ST+h = 1jyT ) = S1 + �h(Pr(ST = 1jyT )� S1) (7)

where S1 =
(1�p22)

(2�p11�p22) is the unconditional probability of St = 1; � =

p11 + p22 � 1 and (Pr(ST = 1jyT ) is the last �ltered probability of ST = 1
conditional on the last in-sample observation yT : In the forecast simulation,

a value between 0 and 1 is drawn from an uniform distribution for each

h starting from 1 to 8, and if the drawn value is less than or equal to

E(ST+h = 1jyT ) then ST+h = 1; but otherwise ST+h = 2: The relevant

state dependent model parameters are then used to compute the simulated

forecast value yT+hjT : or byT+hjT = E(yT+hjT :): The results of the forecasting
exercise are illustrated in Figure 2. The MS-BN model outperforms the BN

model for all forecast horizons, although the di¤erence is not statistically

signi�cant.

4 Conclusion

This paper has shown that an SSOE speci�cation can provide a useful frame-

work for undertaking BN decompositions when both permanent and transi-

tory components follow a Markov-switching process. The SSOE speci�cation

ensures that the permanent and transitory components in the model are BN

components, and one can easily adapt the techniques that are typically used
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Figure 2: Forecast Performance of MS-BN and BN Models
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to estimate UC and MS models to account for the single source of error. An

application to US real GDP shows that an ARIMA(2,1,2) MS-BN model

is well speci�ed, and leads to components that re�ect recognized "stylized

facts".

It is interesting to observe that even though the perfect correlation be-

tween BN permanent and transitory components is normally considered to

be just a by-product of BN decomposition, this can be exploited to identify

the BN components. The reason for this is that perfect correlation between

innovations to the components implies perfect correlation between innova-

tions to trend and output, and as noted by Morley et al (2003), the BN

trend is always the conditional expectation of the random walk component

for any I(1) process. Since the SSOE model explicitly implies perfect corre-

lation between innovations to trend and output, it leads directly to the BN

trend.

The SSOE approach is quite easy to work with, and one could easily

introduce more sophisticated MS processes into an SSOE model, and then

undertake a BN decomposition. Such exercises could be the focus of future

research.
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