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Abstract 
 
 

This paper provides a Bayesian approach to inference on a multi-state latent 

factor intensity model to manage the problem of highly analytically intractable pdfs. 

The sampling algorithm used to obtain posterior distributions of the model parameters 

includes a particle filter step and a Metropolis-Hastings step within a Gibbs sampler. 

A simulated example is conducted to show the feasibility and accuracy of this 

sampling algorithm. The approach is applied to the case of credit ratings transition 

matrices. 
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1 Introduction

Economic and financial analysis which involves estimating latent factor mod-

els and/or estimating multi-state models have grown with the availability

of computer simulation algorithms (see for examples, McNeil and Wendin

(2007), Fiorentini et al. (2004), and Bauwens and Veredas(2004)). Recently,

Koopman, Lucas and Monteiro (2008) proposed a multi-state latent factor

intensity model for credit ratings to allow for multiple origins and desti-

nation states. Their approach is set in a continuous time framework, and

their application is quite specific because they note that the “econometric

issues related to the generalization are intricate and the computational con-

sequences are severe (p.422)”. Part of the difficulty lies with a likelihood

which is a high dimensional integral with analytically intractable pdfs.

Bayesian econometrics have grown in importance as a way to manage

complicated likelihood functions. This paper proposes a version of the Gibbs

sampler which includes a particle filter step and a Metropolis-Hastings (MH)

step to estimate a multi-state latent factor intensity model1. As noted by

McNeil and Wendin (2007) MCMC algorithms such as the Gibbs sampler

can be used to estimate models with complex latent structures such as seri-

ally correlated random effects and/or multivariate random effects capturing

heterogeneity across industry sectors. Since the multi-state latent factor

intensity model is a highly non-linear state space model, the particle filter

of Pitt and Shepard (1999) within a Gibbs sampler provides an appropri-

ate way of simulating the time-dependent latent factor from the intractable

conditional filtered density.

The paper is organised as follows. Section 2 presents a general multi-

state latent factor intensity model and sets out the likelihood. The Bayesian

approach and the sampling algorithms are set out in Section 3. A simulation

study to validate the algorithm is described in Section 4 and an empirical

case study is contained in Section 5. Concluding remarks are in Section 6.

2 Multi-state latent factor intensity model

In this section, the multi-state latent factor intensity model is presented.

Let s denote the sth transition from one state to another out of a total of S
1For an analysis of credit ratings in a Bayesian framework without allowing for latent

variables, see Das, Fan and Geng (2002).
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possible transitions and let k be the kth unit in the sample of K transiting

from one state to another. The instantaneous probability λsk(ti) of unit k

engaging in transition s at time ti is:

λsk(ti) = Rsk(ti) exp [ηs + γswk(ti) + αsψ(ti)] . (1)

Here Rsk(ti) is a dummy variable that takes the value of one if unit k is ‘at

risk’ of transition. The unknown parameters of the model are ηs, γs and αs.

The vector ns represents the constant reference-level log-intensity of transi-

tion type s, γs measures the sensitivity of unit k’s association to changes in

observable explanatory variables wk(ti) and αs measures the sensitivity of

unit k’s association to changes in an unobservable common dynamic latent

factor ψ(ti). A deterministic hazard function Hsk(ti) can also be attached

to equation (1); in this paper we let Hsk(ti) = 1.

The latent variable ψ(ti) accounts for unobserved dependence between

the transition histories in a parsimonious way. We make the assumption

that ψ(ti) follows an AR(1) process:

ψ(ti) = ρψ(ti−1) + ε(ti), i = 1, ..., N (2)

ε(ti) ∼ N(0, σ2) (3)

where all of the roots of ρ lie outside the unit circle. However we note that

this assumption is not central to the method we propose and that the model

could easily be generalized to accommodate alternative functional forms and

higher order AR processes. As αs and σ are not simultaneously identified,

we normalize the parameter space so that σ = 1.

2.1 Likelihood function

Let Ysk(ti) be a function that is equal to 1 when unit k experiences a tran-

sition event of type s at time ti and zero otherwise and let τ i = ti − ti−1 be

the duration between events. If we define

zi = {τ ,R11(ti), ..., RSK(ti), Y11,(ti), ..., YSK(ti)} (4)
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then the likelihood function of θ conditional on ψi, for the i
th event time is:

p(zi|θ, ψ(ti), ρ) =
KY
k=1

SY
s=1

exp

⎛⎝Ysk(ti)
¡
ηs + γ0swkt + αsψ(ti)

¢
−Rsk(ti)

tiZ
ti−1

λsk(ti)dt

⎞⎠
(5)

where θ = {η1, ..., ηS , γ01, ..., γ0S, α1, ..., αS} and ρ = {ρ1, ..., ρr}. Then, the
likelihood function of θ for the whole sample period is then

p(z|θ, ρ) =
NY
i=1

p(zi|θ,Fti−1 , ρ) (6)

=
NY
i=1

Z
p(zi|θ, ψ(ti), ρ)p(ψ(ti)|Fti−1 , ρ)dψ(ti)

where Fti−1 denotes the history of all observations up to time ti−1, z is

the collection of {z1, z2, ..., zN} and p(ψ(ti)|Fti−1 , ρ) is a predictive density

which is defined as:

p(ψ(ti)|Fti−1 , ρ) =

Z
p(ψ(ti)|ψ(ti−1), ρ)p(ψ(ti−1)|Fti−1 , θ, ρ)dψ(ti−1) (7)

3 Bayesian Inference

Before Bayes’ theorem can be applied to the likelihood, the first step is to

specify a prior distribution for (θ, ρ). We assume that each parameter is a

priori independent, and to cater for model comparison the elicited priors

have to be proper. Thus, the joint prior pdf is given as

p(θ, ρ) = I(ρ)
SY
s=1

p(ηs)p(γs)p(αs), (8)

where the prior pdfs are: ηs ∼ N(ηs, σ
2
ηs
), γs ∼ N(γs, σ

2
γs
) and αs ∼

N(αs, σ
2
αs). Elements in ρ are bounded within an uniform distribution,

U(−1, 1), to ensure stationary in ψ(ti). The indicator function I(ρ) is such

that I(ρ) = 1 if the roots of ρ are within the range of the uniform distribu-

tions.

The second step is to combine p(θ, ρ) with the likelihood function in (6)
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to give the joint posterior pdf for (θ, ρ):

p(θ, ρ|z) ∝ p(θ, ρ)p(z|θ, ρ) (9)

Given that inferences on the parameters are made from their marginal pos-

terior pdfs which are highly intractable, we propose a Gibbs sampler that en-

compasses an Auxiliary Particle Filter (APF) (see Pitt and Shepard (1999))

for simulating ψ(ti) and a Metropolis-Hastings (MH) algorithm for θ.

It would be appropriate at this juncture, to note briefly the rationale

for the APF. Producing draws of ψ(ti) via a filtering method involves the

repetition of two basic steps: predicting and updating. These steps re-

cursively produces sequences of draws of ψ(ti) from the filtered density

p(ψ(ti)|Fti , θ, ρ). In the prediction step, p(ψ(ti+1)|Fti , θ, ρ) is obtained by

projecting p(ψ(ti)|Fti , θ, ρ) one-step ahead from p(ψ(ti+1)|ψ(ti), ρ)

p(ψ(ti+1)|Fti θ, ρ) =
Z

p(ψ(ti+1)|ψ(ti), ρ)p(ψ(ti)|Fti , θ, ρ)dψ(ti) (10)

and as new information arrive at ti+1, the filtered density is updated via

Bayes theorem:

p(ψ(ti+1)|Fti+1 , θ, ρ) ∝ p(zi|θ,Fti−1 , ρ)p(ψ(ti+1)|Fti , θ, ρ). (11)

Although the filter approach is conceptually straightforward, because the

multi-factor latent intensity model is a non-linear non-gaussian state space

model, the filtered density is intractable. We thus adopt the APF to re-

cursively simulate p(ψ(ti)|Fti , θ, ρ) from period i = 1 to N . As noted in

Aguilar and West (2000), the APF is a proven technique for sequential

updating of simulation-based summaries for filtered2 distribution for time-

evolving states; for example Chib et al. (2002) used the APF to estimate a

stochastic volatility model with jumps.

3.1 Gibbs sampler

This subsection implement the main steps of our proposed sampling algo-

rithm while the subsequent two subsections provide the steps involved in

2 In the filtering literature, various methods have been proposed as well, for example
sequential importance sampling and sampling importance resampling approaches. Doucet
et al. (2000) offer an excellent survey on other approaches.
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the APF and MH algorith respectively.

1. Choose an arbitrary starting point for (θ(j), ρ(j)) and set j = 0.

2. Given (θ(j), ρ(j)), sample eψ(ti)(j+1), i = 1, ..., N, using the APF algo-

rithm set out below.

3. Sample ρ(j+1) from

ρ(j+1)|eψ(t1)(j+1), ..., eψ(tN)(j+1), θ(j) ∼ N(ρ, σ2p)I(ρ) (12)

where ρ =
µ

NP
i=2

eψ2(ti−1)¶−1µ NP
i=2

eψ(ti−1)ψ(ti)¶ , σ2p =

µ
NP
i=2

eψ2(ti−1)¶−1.
Ensure that the stationarity condition −1 < ρ(j+1) < 1 holds via re-

jection sampling.

4. Given ρ(j+1), sample θ(j+1) using a random walk MH algorithm.

5. Set j = j + 1 and return to step 2.3.

3.1.1 Auxiliary Particle Filter algorithm

1. Given θ(j) and ρ(j) obtainG draws of ψ(t0) fromN(0, 1) and set i = 1.4

2. Given ψ(ti−1)(g) from p(ψ(ti−1)|Fti−1 , θ
(j), ρ(j)), compute

bψ(ti)∗(g) = ρ(j)ψ(ti−1)
(g) g = 1, ..., G, (13)

and

wg =
p(zi|θ(j), bψ(ti)∗(g), ρ(j))
GP
l=1

p(zi|θ(j), bψ(ti)∗(l), ρ(j)) g = 1, ..., G. (14)

3. Construct the following CDF

cg = cg−1 + wg g = 1, ...., G. (15)

3Note that we have experimented with different MCMC setups, including a version of
the MH algorithm with an APF step for Ψ. We found that the Gibbs sampler version
reported here is more stable and that it ensures convergence of the parameters as the
chain progresses.

4We assume that ψ(t−1)(g) are zeros, thus ψ(t0)|F0, θ(j) ∼ N(0, 1).
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and starting from c1 find the first cg which is greater than u, where u

is drawn from U(0, 1).

4. Select the associated bψ(ti)∗(g) and ψ(ti−1)(g) and set bψ(ti)∗(k1) = bψ(ti)∗(g)
and ψ(ti−1)(k1) = ψ(ti−1)(g).

5. Repeat steps 3 to 4 R times to obtain {bψ(ti)(k1), ...., bψ(ti)(kR)} and
{ψ(ti−1)(k1), ...., ψ(ti−1)(kR)}.

6. For each kl, simulate

ψ(ti)
∗(l) ∼ N(ρ(j)ψ(ti−1)

(kl), 1) l = 1, ..., R (16)

and compute

w∗l =
p(zi|θ(j), ψ(ti)∗(l), ρ(j))
p(zi|θ(j), bψ(ti)∗(kl), ρ(j)) . (17)

7. Construct the CDF for π∗l

c∗l = c∗l−1 +
w∗l
RP
r=1

w∗r

l = 1, ...., R (18)

and starting from c∗1 find the first c
∗
l which is greater than u∗, where

u∗ is drawn from U(0, 1).

8. Select the associated ψ(ti)
∗(l) and set ψ(ti)(1) = ψ(ti)

∗(l).

9. Repeat step 7 G times to obtain {ψ(ti)(1), ...., ψ(ti)(G)}. Note that
these draws are deemed to be from p(ψ(ti)|Fti , θ(j), ρ(j)).

10. Compute the likelihood5 at i

bp(zi|θ(j), ρ(j)) =
⎛⎝G−1

GX
g=1

wg

⎞⎠ÃR−1 RX
l=1

w∗l

!
. (19)

11. Take expectation of

eψ(ti)(j+1) = G−1
GX
g=1

ψ(ti)
(g). (20)

5See Pitt (2002).

6



12. Set i = i+ 1 and return to step 2 until i = N .

13. Compute the likelihood for the whole sample

bp(z|θ(j), ρ(j)) = NY
i=1

bp(zi|θ(j), ρ(j)). (21)

3.1.2 Metropolis-Hastings algorithm

1. Given θ(j), generate a candidate θ∗(j) from a random walk transition

density q(θ∗(j), θ(j)).

2. Calculate the acceptance probability

α(θ(j), θ∗(j)) = min

"
p(θ∗(j))bp(z|θ∗(j), ρ(j+1))
p(θ(j))bp(z|θ(j), ρ(j+1)) , 1

#
(22)

where bp(z|θ∗(j), ρ(j+1)) and bp(z|θ(j), ρ(j+1)) are computed from the

APF algorithm.

3. Generate an independent random variable u from U(0, 1).

4. Set θ(j) = θ∗(j) if u < α(θ(j), θ∗(j)) or else θ(j) = θ(j).

5. Repeat steps 1 to 4 J times. Note that this is to allow for burn-in.

6. Set θ(j+1) = θ(j).

3.2 Marginal likelihood and likelihood function estimation

Marginal likelihood
An important part of the analysis is to compare competing models. In

the Bayesian context, one approach to model comparison is to evaluate the

marginal likelihoods of different models. These marginal likelihoods measure

how well the competing models predict the observed data. The marginal

likelihood is defined as the integral of the likelihood function with respect

to the prior density:

p(FT ) =

Z
p(θ, ρ)p(z|θ, ρ)dθdρ. (23)

where p(z|θ, ρ) =
NQ
i=1

R
p(zi|θ, ρ,Fti−1)p(ψ(ti+1)|Fti , θ, ρ)dψ(ti+1).
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However, in our paper, the marginal likelihoods are analytically impos-

sible to compute. We have adopted the Modified Harmonic Mean (MHM)

method of Gelfand and Dey (1994) to obtain the marginal likelihood. The

advantage of this approach is that it can be employed along with almost any

sampling technique and it uses the posterior parameters’ draws to obtain the

marginal likelihood:

bp(FT )−1 = 1

J

JX
j=1

f(θ(j), ρ(j))

p(θ(j), ρ(j))bp(z|θ(j), ρ(j)) (24)

where f(θ, ρ) is a density function with supported constraint within the

posterior support of (θ, ρ) and which ideally approximates the posterior pdf.

Geweke (1999) suggests a truncated multivariate normal distribution with

different sets of truncation values, δ ∈ (0, 1), for f(θ, ρ) :

θ ∼ N

Ã bθbρ , bΣθ,ρ!
I(Γ)

(25)

where bθ = J−1
JP

j=1
θ(j), bρ = J−1

JP
j=1

ρ(j),and bΣθ = J−1
JP
j=1

"
θ(j) − bθ
ρ(j) − bρ

#"
θ(j) − bθ
ρ(j) − bρ

#0
.

I(Γ) is an indictor function such that I(Γ) = 1 if

Ã"
θ(j) − bθ
ρ(j) − bρ

#0 bΣ−1θ
"
θ(j) − bθ
ρ(j) − bρ

#!
≤

q where q is such that P (χ2a < q) = δ and a is the dimension of (θ, ρ). Note

that in computing f(θ, ρ) an additional normalising constant δ is added to

ensure f(θ, ρ) integrates to unity.

It is worth noting that the marginal likelihood will allow one to test

which alternative specifications is important for predicting the probabilities

of transitions. However, if there is no clear ‘winning’ model, one may wish

to account for this uncertainty by combining the dynamics of several speci-

fications. This can be achieved by averaging the dynamics of each candidate

model with the weights being the posterior model probabilities.

4 Simulation study

To check that our technique for obtaining the posterior distributions of the

model parameters works in practice, we apply the algorithm to a simulated

data set with K = 300 units. The DGP allows for three possible states with
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the third state being an absorbing state (hence S = 4). We further assume

that the starting process of ψ(ti) is zero, and the signs of αs are restricted

such that αs : αdown < 0 for transitions to a lower state and αs : αup > 0

for transitions to a higher state. The parameter values that were used to

simulate the data are shown in the first column of table 1. The interval

between transition events is determined by an exponential distribution with
KP
k=1

SP
s=1

λsk(ti). An univariate multinomial distribution is used to determine

which kth unit is experiencing a transition at ti with probabilities of transi-

tion given as

πk(ti) =

SP
s=1

λsk(ti)

KP
l=1

SP
s=1

λsl(ti)

, k = 1, ...,K. (26)

Next, we determine the kth unit state from a multinomial distribution with

the probability of the type of transition given by

πsk(ti) =
λsk(ti)
SP
l=1

λlk(ti)

, s = 1, ..., S. (27)

The DGP will end when all the units have entered the absorbing default

state.

The priors for the parameters are assumed to be uninformative with the

hyper-parameters outlined in the third column of table 1. The sampling

scheme6 was run for 12000 draws and the first 2000 draws were discarded.

From table 1, we note that the true values are close to the posterior means

of (θ, ρ) and within the ± one standard deviation range. In other words, as
shown in figure 1, the true values are well within their respective marginal

posterior pdfs. In addition, we also perform the convergence diagnostic

test of Heidelberger and Welch to check for convergence in draws of (θ, ρ).

This test suggest that the draws of (θ, ρ) have converged. Finally, figure 2

shows that the posterior mean of ψ(ti) and the actual latent path are almost

identical with a correlation which is close to 1. These results indicate that

our proposed sampling scheme has successfully estimated the MLFI model.

6The program used for the estimation is written in Matlab code. In the algorithm, we
also set G = 100, R = 200, and J = 200.
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Table 1: Simulated data from the multi-state latent factor intensity model
Posterior Heidelberger &

Parameter True Value Prior Mean Welch test
η1→2 -4.0 N(0, 100) -3.7305 passed

(0.4765)
η2→1 -4.5 N(0, 100) -4.7658 passed

(0.5380)
η1→3 -5.0 N(0, 100) -4.5896 passed

(0.4848)
η2→3 -3.5 N(0, 100) -3.1850 passed

(0.4752)
αup 1.0 N(0, 100)αup>0 0.9765 passed

(0.0946)
αdown -1.0 N(0, 100)αdown<0 -0.9356 passed

(0.1516)
ρ 0.9 U(−1, 1) 0.9038 passed

(0.0202)
The standard deviations are given in the parentheses.

Figure 1. Estimated marginal posterior pdfs and actual values
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Figure 2. Posterior estimates and actual7 latent values of ψ(t)
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The thin line is the posterior mean and the dotted line is the path of of ψ(t).

5 Empirical Study of S&P Credit Ratings

Migration ratings transition matrices play an important role in credit deci-

sions and they have become even more important under the Basel II Capital

accord because ratings can be used to determine the size of a bank’s cap-

ital buffer. A good understanding of the dynamic behavior of migration

transition matrices and its co-variation with economic conditions is thus

important from the perspective of both the finance industry and the regu-

latory authorities. In this empirical section, we consider the monthly mi-

gration credit ratings of 1049 firms for the sample period between 1995:02

to 2005:04. This data is sourced from the Standard & Poor’s CompuStats

database.

We classify the S&P ratings into 4 rating groups (defined below) and

7For a neater presentation, the 95% confidence interval is not plotted in figure 2,
however, the actual path is well within the confidence interval.
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consider transitions between these broad groups.

A = {AAA,AA+, AA,AA−, A+, A,A−}
B = {BBB+, BBB,BBB−, BB+, BB,BB−, B+, B,B−}
C = {CCC+, CCC,CCC−, CC+, CC,CC−, C+, C, C−}
D = Default

As shown in Table 2, rather than focusing on 12 possible transitions, because

there are negligible transitions for the cases: A→ C, A→ D, C → A, D →
A and D→ C in the sample period, we are left with 7 possible transitions.

These are A→ B, B → A, B → C, B → D, C → B, C → D and D → B.

Table 2: Number of Transitions in the sample period
To

From A B C D
A — 369 1 4
B 222 — 459 98
C 3 99 — 36
D 1 57 2 —

In addition to restricting αs : αdown < 0 for transitions to a lower state

and αs : αup > 0 for transitions to a higher state, we restrict γs : γdown < 0

for transitions to a lower state and γs : γup > 0 for transitions to a higher

state. We assume that the priors for the parameters are fairly uninformative

but proper whereby the prior hyper-parameters are ηs = ln
NP
i=1

KP
k=1

Ysk(ti)−

ln
NP
i=1

KP
k=1

Rsk(ti), αs = γ
s
= 0, and σ2ηs = σ2αs = σ2γs = 1002. Note that

ηs in this case is the ML estimate. The duration between rating events is

monthly and this example may be viewed as a discrete time version of the

multi-state latent factor intensity model with more than one firm transiting

each month. We allow for sampling scheme of 12000 draws, and discard the

first 2000 draws as burns-in. Table 1 reports the estimates of the parameters

and the marginal likelihoods for five models.

Columns 2 and 3 contain the estimates generated from the simpliest

model: λsk(ti) = Rsk(ti) exp(ηs). Column 2 contains the maximum likeli-

hood estimator of ηs while column 3 contains their Bayesian counterparts
8.

8The Metropolis-Hasting algorithm is used to estimate this model.
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As expected with fairly uninformative priors, the Bayesian estimates are

almost identical to those of the MLE.

Columns 4 and 5 report estimates for models which include a macroeco-

nomic variable, i.e. λsk(ti) = Rsk(ti) exp(ηs + γswk(ti)) where wk(ti) is a

macroeconomic variable. M2 is the model which includes the growth of the

industrial production index (IPI), whileM3 is the model which includes the

growth of employment (Emp). A comparison of the log marginal likelihood

estimates show that M2 and M3 have informational gain over M1.

Next, we consider a model with an unobserved common component and

denote this model as M4. The log marginal likelihood show that M4 has

considerable information gain over the preceding models. In the last model

M5, we relax the assumption of a common latent variable, instead we allow

for state-dependent latent variables such that each ψs(ti) follows a random

walk process. However, the log marginal likelihood shows that M5 is not an

improvement over the model with a common latent component. This may

not be too surprising as 60% of total migration ratings are from A to B and

B to C.

Figure 3. Paths of the estimated unobserved common component and the

industrial production index
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Table 3: Posterior means, posterior standard deviations and Marginal like-
lihoods

Parameter MLE M1 M2 M3 M4 M5

log p(z|Mi) -8313 -8191 -8236 -8134 -8156
ρ — — — — 0.9713 1

(0.0239)
ηA→B -4.4917 -4.4923 -4.1218 -4.0211 -5.2960 -5.7446

(0.0515) (0.0536) (0.0595) (0.3321) (0.9050)
ηB→A -5.7531 -5.7560 -5.8749 -5.8343 -5.6279 -5.7245

(0.0663) (0.0857) (0.0842) (0.1195) (0.6363)
ηB→C -5.0267 -5.0264 -4.6545 -4.5577 -5.8182 -6.6572

(0.0464) (0.0500) (0.0548) (0.3290) (0.8709)
ηB→D -6.5708 -6.5866 -6.1984 -6.1104 -7.3680 -8.2878

(0.1004) (0.1048) (0.1067) (0.3445) (1.3502)
ηC→B -5.3140 -5.3186 -5.3860 -5.3751 -5.0671 -4.7074

(0.1007) (0.1021) (0.1073) (0.1493) (0.9567)
ηC→D -6.3256 -6.3333 -6.1796 -6.0438 -7.4239 -5.1199

(0.1650) (0.1637) (0.1611) (0.3703) (1.2388)
ηD→B -4.6576 -4.6679 -4.7401 -4.7183 -4.3857 -5.3805

(0.1339) (0.1343) (0.1388) (0.1855) (1.4483)
αdown — — — — -0.1952 -0.2650

(0.0438) (0.0556)
αup — — — — 0.0585 0.2088

(0.0208) (0.0780)
γdown — — -13.4419 -0.4114 — —

(0.8655) (0.0319)
γup — — 3.2337 0.0584 — —

(1.4934) (0.0373)
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The plot in Figure 3 suggests that the unobserved common component

in M4 co-move with various phases of the US economy. The rise and fall ofbΨ between the 1995 to 2001 are in tandem with the boom and bust of the

dot com episode, and the trough of bψti correspond to the US recession of

2001. In addition, the correlations between IPI and bΨ, and Emp and bΨ
are about 0.69 and 0.55, respectively, and they provide further evidence of

co-movement. Indeed, this finding is in line with several empirical studies

(Nickell et al. (2000), Bangia et al. 2002, Koopman and Lucas (2005), Hu et

al. (2002)) that systematic credit risk factor correlate with macro-economic

conditions. The extracted latent variable is acting as a broad-based general

proxy for macroeconomic conditions.

6 Conclusions

This paper has proposed a Bayesian approach to estimate a multi-state

latent factor intensity model to manage the problem of highly analytically

intractable pdfs. Our proposed sampling algorithm to estimate the model

included an APF filter step and a MH step within a Gibbs sampler. In order

to access the feasiblity and accuracy of the sampling algorithm, we conducted

a simulated example. Estimation of the parameters and the latent variable

were inline with the simulated values. We applied the method to the case of

credit ratings transistion matrices from S&P 500. The results revealed that

the latent variable provided a good proxy for broad-based macroeconomic

conditions. In fact, the latent variable was a better proxy for macroeconomic

conditions than either the industrial production index or the employment

variable.
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