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Abstract 

 

    The use of GARCH and jump models to capture asset price dynamics is ubiquitous in 

economics and finance literature. We show that the size of Breitung (2002) 

nonparametric unit root test is robust to the presence of jump and GARCH errors but not 

for the other standard unit root tests. The power performance of all tests, except for 

Phillips (1987) test, is fairly robust provided that the mean process is not nearly 

integrated. 
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1. Introduction 

 

This paper examines the size and power properties of several unit root tests when applied to 

data that are generated from a jump diffusion process with GARCH errors. This issue is 

especially relevant given that many high frequency financial time series are characterized by 

non-stationarity and their errors are characterized by jump processes and conditional 

heteroskedasticity. There is a growing body of literature that uses jump models to 

characterize the dynamics of numerous financial data such as stock returns (Ball and Torous, 

1983; Chan and Maheu, 2002), exchange rates (Jorion, 1993; Vlaar and Palm, 1993), interest 

rates (Naik and Lee, 1993; Das, 2002), and electricity prices (Johnson and Barz, 1999; 

Knittel and Roberts, 2001). These jump models are often combined with GARCH errors 

because they more adequately capture the leptokurtosis commonly observed in the 

unconditional distribution of financial data. Jump models are also better suited to explain 

large discrete changes found in asset returns widely observed in speculative markets than 

GARCH and stochastic volatility models (see Gallant, et al. 1997; Andersen et al. 1999). 

 

The literature on unit root test has exclusively focused on the effects of GARCH error 

processes on the performance of standard unit root tests. The GARCH process of Bollerslev 

(1986), that permit a class of time series models for which the conditional variance is allowed 

to vary through time as a function of current and past information, clearly violates the 

constant variance assumption of many unit root tests. Kim and Schmidt (1993) and Haldrup 

(1994), amongst others, have shown that standard Dickey Fuller (DF) tests are subject to 

minor size and power distortions provided that the variance process is not degenerate (i.e. the 

intercept of the conditional variance specification is not zero) and the volatility parameter 

(i.e. the coefficient of the squared and lagged residuals) is not far from zero. This note 

extends the unit root test literature by taking into account the effects of jump processes and 

GARCH errors on the performance of unit root tests.  

 

In the absence of asymptotic theory for unit root tests in the presence of jump and GARCH 

errors, Monte Carlo experiments are employed to investigate the reliability of the standard 

DF test, Phillips (1987) semiparametric test, the heteroskedasticity-robust DF test using 

White’s corrected standard errors, and Breitung (2002) nonparametric test  when applied to 

data that exhibit jump and GARCH errors. The former two tests are commonly employed in 

econometric modelling to determine the mean-reversion property of the data. The rest of the 

paper is organised as follows. Section 2 discusses the four types of unit root tests. Section 3 
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lays out the design and conduct of the experiment. It also discusses the results and their 

implications for empirical research. Section 4 concludes. 

 

2. Testing the Unit Root Null in the Mean 

 

Consider a data generating process (DGP) that follows a jump process with GARCH errors 

 

      ttttt IJuyy ⋅+++= −1βα      (1) 

 

where ),0(~| 1 ttt hNu −Ω , ttt hzu = , )1,0(~ Nzt  and 12

2

110 −− ++= ttt huh φφφ  is a 

GARCH(1,1) process. The jump component ),0(~ 2δNJ t  and tI  is drawn from a Poisson 

distribution such that !)exp()|( 1 jjIP
j

tt λλ−=Ω= − for ,...2,1,0=j and λ  is the jump 

intensity. This model is a simplification of many financial models that may include more 

complex structures in the conditional mean and/ or conditional variance equations. The null 

hypothesis of a unit root (i.e. 1:0 =βH ) suggests that ty degenerates at zero asymptotically.  

 

We consider four different types of unit root tests for which two of them are regarded as 

popular testing procedures that are commonly reported in empirical research.  They are the 

Dickey and Fuller (1979) (DF) and Phillips (1987) (PP) semi-parametrically corrected tests. 

The standard DF test statistics are obtained by running the OLS regression  

 

ttt eyy ++=∆ −1βα        (2) 

 

where )1,0( ..~ diiet  by assumption. Note that the presence of the GARCH error term would 

violate the i.i.d assumption of the DF regression. The DF test statistic is either a one-sided t-

ratio for the significance of β or a joint F-test for the joint hypothesis 0== βα . We only 

consider the case of 0α =  for ease of exposition. Since heteroskedasticity in stationary time 

series models will yield invalid inference, one strategy is to employ White’s (1980) corrected 

standard errors when computing the DF t-ratio (see Haldrup, 1994; Kim and Schmidt, 1993). 

This heteroskedasticity corrected t-ratio, which we refer to as DFW, merits investigation 

because it is a commonly employed correction in non-stationary time series models.1 Kim 

                                                 
1
 Apart from unit root considerations, the asymptotic theory for the White correction requires the existence 

of both the variance and the fourth moment of the error. The condition for the existence of the 

unconditional fourth moment for GARCH(1,1) is 2 2

1 1 2 2
3 2 1φ φ φ φ+ + < (see Bollerslev, 1986). This condition 

is satisfied for the parameter values considered in our simulation.   
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and Schmidt (1993) show the White standard correction improves the accuracy of the DF 

tests faily well in the integrated and degenerate case. 

 

Phillips (1987) suggests correcting the t-ratio test statistic non-parametrically when 
t

e is 

weakly dependent. The modified PP test statistic is 
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parameter. The Bartlett kernel which possesses a highly desirable property of ensuring 

nonnegativity of the variance estimate (Newey and West, 1987) is widely used to compute 

the PP test statistic.  

 

Lastly, we consider Breitung (2002) nonparametric (NP) test that is shown to be robust to 

GARCH errors even under integrated or explosive volatility. Such a property is generally not 

satisfied by the standard DF and PP tests. Breitung’s NP test is defined as 

∑
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where ∑
=

=
t

i

iuU

1

ˆˆ , yyu ii −=ˆ where y  is the sample mean. The null of a unit root is rejected 

when the value of the variance-ratio statistic is lower than the respective critical values 

reported in Table 5 of Breitung (2002).  

 

3. Monte Carlo Experiment     

 

3.1 Simulation Design 

 

The finite-sample properties (size and power) of the tests described in the previous section 

are examined in the presence of jump process and its effects with GARCH errors. We first 
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examine the empirical size of the tests by simulating data from (1) with β =1.0. In setting the 

parameter values, we consider how close the GARCH process is to being integrated, the size 

of the volatility parameters ( 1φ ), and the size (δ ) and intensity ( λ ) of the jump. To this end, 

we consider 1φ + 2φ = (0.9,0.99) by setting 1φ =0.1 with 2φ =(0.8,0.89), and 1φ =0.5 with 

2φ =(0.4,0.49). 2 We set 0φ =1 so that as 1φ + 2φ  tends to one the unconditional variance 

increases and there is no degeneracy. The size and frequency of jumps are controlled by δ = 

(0.01, 0.1) and λ  = (0.01, 0.5).3 To mitigate the effects of start-up values, we discard the 

initial 500 observations. For empirical relevance, samples of 250 and 500 observations are 

drawn and the experiment is repeated 10,000 times. The empirical power of the tests is 

examined for β  between 0.95 and 0.99 with 0.01 increments. The near-integrated region in 

the mean warrants investigation as empirical evidence suggests that many financial time 

series, such as short-term interest rates (Das, 2002), exhibit near unit root property. 

 

3.2 Results 

 

Empirical size and power with jumps 

 

Table 1 reports the results on the size of the tests when the DGP contains a jump 

process. There are moderate deviations from the nominal size for all tests in all cases. It is not 

surprising to find that the heteroskedasticity-consistent covariance matrix proposed by White 

(1980) does not correct for the bias generated by the jump process. Instead the empirical size 

of DFW test is marginally inflated compared with that of the DF test. For the size-adjusted 

power of the tests we only report results for T=500, 1.0=δ  and 01.0=λ  as the results for 

T=250 and other values of δ and λ  are by and large consistent with the reported case. Figure 

1 shows that the power of the tests declines sharply as the mean process becomes more 

integrated (i.e. as β  approaches unity) at both 1% and 5% significance levels. We find that 

the NP test’s power performs worse than its parametric (DF and DFW) and semi-parametric 

(PP) counterparts.   

 

 

                                                 
2
 Many financial time series are defined by a near-integrated GARCH process. See Kim and Schmidt 

(1993) for a review of the parametric configurations that arise in empirical question.  
3
 The jump size and frequency values are chosen to be consistent with those reported in the literature. 
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          Table 1.   Empirical sizes in the presence of a jump process (T=500) 

( λδ , ) Tests 1% 5% 10% 

DF 1.19 5.38 9.98 

PP 1.37 5.65 10.42 

DFW 1.32 5.65 10.48 
(0.01,0.01) 

NP 0.86 5.72 10.79 

     
DF 1.16 5.21 10.52 

PP 1.38 5.83 10.91 

DFW 1.26 5.58 10.58 
(0.01,0.5) 

NP 0.9 5.61 10.92 

     
DF 0.97 5.2 10.22 

PP 1.16 5.66 10.64 

DFW 1.17 5.41 10.73 
(0.1,0.01) 

NP 0.94 5.72 10.98 

     
DF 1.27 5.03 9.92 

PP 1.38 5.5 10.19 

DFW 1.22 5.39 10.03 
(0.1,0.5) 

NP 0.77 4.98 10.54 
                   Note: The tests are Dickey-Fuller t-test (DF), Phillip’s (1987) modified t-test (PP),  

                       White’s corrected Dickey-Fuller test (DFW) and Breitung’s (2002) test (NP).  

 

Figure 1.  Power under different values of β  with 1.0=δ , 01.0=λ , and T=500 
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Note: See note to Table 1. 
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Empirical size and power with jumps and GARCH errors 

 

From table 2 we can observe that only the empirical size of NP test displays robustness 

against jump process and GARCH errors. Both the empirical size of DF and DFW tests are 

biased upward, while that of PP test is biased downward. Taken together, the results suggest 

that the DF and DFW (PP) tests would tend to over (under) reject the null of a unit root, 

while the NP test would provide a more accurate unit root diagnostic for a series that exhibits 

both jumps and GARCH errors. Again, we find that the White’s heteroskedastic correction 

does not seem to work well at decreasing the empirical size of the DF test when a jump 

process is present with GARCH errors. There is evidence that as the jump size or jump 

intensity increases (holding all other parameters constant), the empirical size increases 

marginally. In addition, as the GARCH process becomes more integrated (i.e. 1 2φ φ+  

approaches 1)  the   empirical  size  of  DF  and  DFW  (PP) tests  increases  (decreases). An  

 

Table 2.  Empirical sizes in the presence of a jump process and GARCH errors (T=500) 

 1%  5% 

DF 90.021 =+ φφ  99.021 =+ φφ   90.021 =+ φφ  99.021 =+ φφ  

( λδ , ) (0.1,0.8) (0.5,0.4) (0.1,0.89) (0.5,0.49)  (0.1,0.8) (0.5,0.4) (0.1,0.89) (0.5,0.49) 

(0.01,0.01) 2.98 2.26 4.42 4.47  8.45 6.97 10.15 10.09 

(0.01,0.5) 3.41 2.28 4.53 4.49  8.47 7.24 10.26 10.13 

(0.1,0.01) 3.25 2.29 4.46 4.61  8.48 6.96 10.31 10.24 

(0.1,0.5) 3.42 2.43 4.56 4.63  8.51 7.50 10.38 10.27 

PP          

(0.01,0.01) 0.51 0.82 0.42 0.61  3.37 4.39 2.84 3.21 

(0.01,0.5) 0.57 0.84 0.51 0.72  3.39 4.48 3.13 3.30 

(0.1,0.01) 0.65 0.84 0.53 0.67  3.48 3.95 3.28 3.71 

(0.1,0.5) 0.67 0.89 0.63 0.75  3.50 4.50 3.35 3.74 

DFW          

(0.01,0.01) 3.83 2.35 5.28 5.37  9.44 7.48 11.06 11.71 

(0.01,0.5) 4.14 2.46 5.82 5.46  9.52 7.86 11.90 11.77 

(0.1,0.01) 4.19 2.38 5.62 5.82  9.67 7.50 11.78 11.86 

(0.1,0.5) 4.21 2.83 5.85 5.88  9.80 8.09 11.98 11.89 

NP          

(0.01,0.01) 0.72 0.90 0.91 1.01  4.77 5.15 5.23 5.40 

(0.01,0.5) 0.90 0.91 0.95 1.07  4.95 5.47 5.38 5.55 

(0.1,0.01) 0.91 0.92 0.92 1.13  5.09 5.40 5.44 5.45 

(0.1,0.5) 0.92 0.95 0.97 1.15  5.45 5.87 5.89 5.92 

Note: See note to Table 1. 
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Table 3.  Power at 5% nominal level in the presence of a jump process and GARCH errors 

(T=500) 

 95.0=β   99.0=β  

DF 90.021 =+ φφ  99.021 =+ φφ   90.021 =+ φφ  99.021 =+ φφ  

( λδ , ) (0.1,0.8) (0.5,0.4) (0.1,0.89) (0.5,0.49)  (0.1,0.8) (0.5,0.4) (0.1,0.89) (0.5,0.49) 

(0.01,0.01) 90.92 93.05 90.73 90.84  18.63 19.18 20.92 21.51 

(0.01,0.5) 91.52 93.35 89.87 90.99  18.62 19.26 21.08 21.84 

(0.1,0.01) 91.52 93.40 90.17 90.66  19.32 19.72 20.82 21.80 

(0.1,0.5) 91.20 93.01 90.03 90.59  19.10 19.83 20.81 20.97 

PP          

(0.01,0.01) 47.65 50.36 30.46 39.12  8.96 9.35 8.28 8.38 

(0.01,0.5) 48.94 50.43 39.33 39.66  8.86 9.24 7.92 8.32 

(0.1,0.01) 48.95 50.39 38.87 39.95  8.95 9.91 8.17 8.24 

(0.1,0.5) 48.66 50.84 38.91 40.62  9.39 9.92 8.21 8.47 

DFW          

(0.01,0.01) 90.02 92.25 89.19 89.26  20.12   20.95 23.43 23.86 

(0.01,0.5) 90.62 92.42 88.22 89.42  20.40 20.51 23.49 23.57 

(0.1,0.01) 90.71 92.65 88.24 88.99  20.55 20.86 23.22 23.88 

(0.1,0.5) 90.49 92.19 88.61 88.66  20.66 20.98 23.21 23.99 

NP          

(0.01,0.01) 62.22 62.75 61.93 62.42  13.78 14.21 13.59 13.67 

(0.01,0.5) 62.24 62.26 62.29 62.45  14.01 14.29 13.78 13.91 

(0.1,0.01) 62.33 62.51 62.30 62.57  13.94 14.58 13.49 13.61 

(0.1,0.5) 62.50 62.33 61.42 62.65  13.79 14.16 13.14 13.98 

Note: See note to Table 1 

 

increase in the volatility paramater 1φ  leads to a marginal decrease (increase) in the empirical 

size of both the DF and DFW (PP and NP) tests. 

 

Referring to table 3, it can be seen that the PP test has the lowest size-adjusted power relative 

to the other tests. While the DF and DFW tests’ power is robust against jump and GARCH 

errors for 0.95β = , their power quickly deteriorates when the root of the mean process is 

close to unity.4 The power of NP and PP tests also reduces sharply in the near-integrated 

region of the mean process. We further investigate the power performance for a large sample 

size of T=1000 and find that there is improvement in the power function but in the case of a 

                                                 
4
 We do not report the results for 0.96β = to 0.98 due to space constraint. We find that the power of all the 

tests deteriorates as β  increases. These results are available from the authors upon request. 
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near-integrated mean process the deterioration in all the tests’ power remains severe.5  As the 

GARCH process becomes more integrated, we observe significant (moderate) reduction in 

the power of the PP (NP) tests. However, for both the DF and DFW tests, there is mild 

improvement in their power when the mean and GARCH processes become more integrated. 

There is no discernible pattern regarding the impact of jump intensity or size on the power of 

the tests.       

 

 

4. Conclusion 

 

We examine the performance of various unit root tests in the presence of a jump process with 

GARCH errors. The empirical sizes of these tests are fairly robust against jump process but 

their power generally suffers from severe distortion as the mean process becomes near-

integrated. In the presence of both jump and GARCH errors, all tests, apart from Breitung 

(2002) NP test, suffer from size distortion. The power performance of Dickey-Fuller and 

White (1980) heteroskedasticity corrected Dickey-Fuller tests are robust to both jump and 

GARCH errors provided that the mean process is not close to being integrated. Overall, our 

Monte Carlo results suggest that we should be suspicious of the accuracy of most of these 

tests when a jump process and GARCH errors are present in the data, and when the mean 

process is nearly integrated.   
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